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Abstract

Distributed control is a reality of today’s
industrial automation and systems. Parts of
a system are on-site, and other elements are
on the edge of the cloud. The overall system-
functioning relies on the reliable operation
of local and remote components.

However, all system parts can be attacked.
Typically, local entities of a cyber-physical
system, such as robot arms or conveyor
belts, get affected by cyber attacks. However,
attacking the control and monitoring
channels between a plant and its remote
controller is attractive, too. There is a
diversity of attacks, such as manipulating a
plant’s input signals, controller logic, and
output signals.
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Abstract

To detect and mitigate the impact of such
various attacks and to make a plant more
resilient, we introduce a self-learning
controller proxy in the plant’s
communication channel to the controller.

It acts as a local trust anchor to the
commands received from a remote
controller. It does black box self-learning
of the controller algorithms and audits its
operations. Once an attack is detected, the
plant pivots into self-piloting mode.

We investigate design alternatives for the
controller proxy. \We evaluate how
complex the control algorithms can be to
enable self-piloting resilience.
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Approacn

L earning the parameters of the
local model by monitoring the
pass-by traffic.

controllerlnput: = <l4, ..., In>
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System Model: Water Tanks
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System Model: Water Tanks
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Approacn

Imitation Learning

Behavioural Cloning + DAGGER
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Evaluation

Implementation as emulation with
the Virtual State Layer (VSL) rapid
prototyping framework.
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Evaluation
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Figure 3: Cyclic behavior of the plant over time. The horizontal axis represents time (seconds). The \}/\
e b

vertical axis corresponds to the pump state (on or off) or tank water level (cm). The blue line tracks the
pump’s on/off (low/high) state. The green (orange) line plots the water level in the lower (upper) tank.
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Evaluation

1.0 - | - -
: 8 T T T T T T T 7
0.8 - .
3‘015-
O
0 1
U
< 0.4 -
o | 4+ 4 4L 1 1L 1L 1 4L 1 1 4
0.2 1
f
0.0 -
1 é é 4 é 6 ; é Sl) 1'0 11 12 1l3 114 /]

Epoch

Figure 4: Accuracy vs. number of epochs. The horizontal axis corresponds to the number of epochs
used for training, one to 14. The vertical axis represents the accuracy (on a scale of zero to one). We
use statistical boxplots. For every box, the central (red) mark indicates the median. The bottom and
top edges of the box indicate the 25th and 75th percentiles. The whiskers extend to the most extreme
data points not considering outliers. Outliers are represented by the orange circles.
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Evaluation
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Figure 5: Performance vs. training instances. The horizontal axis corresponds to the number of obser-

Lf\/(
vations used for training. It ranges from 100 to 4300 observations. The left vertical axis indicates the ,~}/\.
e -

accuracy of the model together with the blue solid line. The blue dotted line tracks the pump’s on/off
(low/high) state. The right vertical axis corresponds to the tank water level (cm). The green (orange)
line plots the water level in the lower (upper) tank.
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Evaluation
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Figure 6: Proxy controller applied to live data. The red lines represent the limits of the upper tank. — **\}/\"

pump’s on/off (low/high) state. The green (orange) line plots the water level in the lower (upper) tank.
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Figure 3: Cyclic behavior of the plant over time. The horizontal axis represents time (seconds). The
Figu re.6: Proxyscontrollen applied te live.data, Jherred lines represent the limits of the upper tank. o

pump’s on/off (low/high) state. The green (orange) line plots the water level in the lower (upper) tank.
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Conclusion

e |t works for non-linear systems
such as water tanks.

* We will follow-up on the
approach.
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