Decentralized Public Key Infrastructure for Autonomous Embedded Systems

Arthur Baudet, Oum-El-Kheir Aktouf, Annabelle Mercier, Philippe Elbaz-Vincent

arthur.baudet@lcis.grenoble-inp.fr

C&ESAR — 2022-11-16

This work is supported by the French National Research Agency in the framework of the “Investissements d’avenir” program (ANR-15-IDEX-02). Reproduction prohibited without written permission of the authors.
This work is supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02).
Reshaping technologies and social sciences

This work is supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02).

Reproduction prohibited without written permission of the authors.

Autonomous Embedded Systems

Agent
- Physical or software entity
- Autonomous (proactive or/and reactive)

Embedded agent
- Resources limitations
- Communication limitation
- Mobility

Multi-Agent Key Infrastructure
- > 2 agents
- Decentralized
- Global problem divided in smaller problems
- Cooperation between agents
- Open
- Dynamic
- Heterogeneous

Russell et al., Wooldridge et al. [1, 2]
Wildfire Monitoring

Drones monitoring a wildfire

Context and Case study
Drones monitoring a wildfire and intruders
State of the Art

What is done to secure MEAS?

Availability
Communication Integrity
State of the Art

What is done to secure MEAS?

- Availability
- Communication Integrity
- Trust Management System
- Cryptography
State of the Art

What is done to secure MEAS?

Availability
Communication Integrity

Trust Management System

Cryptography
State of the Art

What is done to secure MEAS?

- Pre-loaded certificate & key
- Third-party

Availability
Communication Integrity
Trust Management System
Cryptography

Context and Case study 5/19
Arthur Baudet
State of the Art

What is done to secure MEAS?

- Availability
- Communication Integrity
- Trust Management System
- Cryptography

- Pre-loaded certificate & key
- Third-party

Conflict with Autonomy & Heterogeneity
Attacker Model

“Insider attack”: Similar resources as nodes

Control over communication medium: Tampering, replay, etc.
Attacker Model

“Insider attack”: Similar resources as nodes

Control over communication medium: Tampering, replay, etc.

- Secure Communication
- Integrity
- Authenticity
Attacker Model

“Insider attack”: Similar resources as nodes

Control over communication medium: Tampering, replay, etc.

- Secure Communication
- Integrity
- Authenticity
- No Authentication
- Heterogeneity
- Decentralization

Objective
Attacker Model

“Insider attack”: Similar resources as nodes

Control over communication medium: Tampering, replay, etc.

- Secure Communication
- Integrity
- Authenticity
- No Authentication
- Accountability
- Trust Management System

Heterogeneity
Decentralization
Objective

Attacker Model

“Insider attack”: Similar resources as nodes

Control over communication medium: Tampering, replay, etc.

Secure Communication

Heterogeneity
Decentralization

Public Key Encryption

Integrity

Authentication

No Authentication

Accountability

Trust Management System
Multi-Agent Key Infrastructure (MAKI)
Public Key Infrastructure for Multi-Agent System
Multi-Agent Key Infrastructure (MAKI)
Public Key Infrastructure for Multi-Agent System

Main Rule
Messages must be signed with a key linked to a valid certificate.

Hypotheses
1. Standard cryptography is secured
2. Basic routing exists
3. An adequate Trust Management System (TMS) is running
Identity \leftrightarrow Public Key
Reshaping technologies and social sciences

This work is supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02).

Reproduction prohibited without written permission of the authors.

Organization

Identity \leftrightarrow Public Key

Role: None
- Default
- Require a CA to get a certificate
- Share its certificate

Role: Certification Authority (CA)
- Deliver, store and revoke certificates
- Self-signed or cross-certified
- Share its certificate
Reshaping technologies and social sciences

This work is supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02).

Reproduction prohibited without written permission of the authors.

Organization

Identity \leftrightarrow Public Key

Role: None
- Default
- Require a CA to get a certificate
- Share its certificate

Role: Certification Authority (CA)
- Deliver, store and revoke certificates
- Self-signed or cross-certified
- Share its certificate

Revocation
- Certificate Revocation List
- Short-lived certificate
Self-Organization

Global Rules

- At least one CA is required
- > 1 CA is advisable to prevent single-point-of-failure situations
- Agents choose their roles
- Any agent can become a CA
Global Rules

- At least one CA is required
- > 1 CA is advisable to prevent single-point-of-failure situations
- Agents choose their roles
- Any agent can become a CA

Role self-assignment flowchart
3 Thresholds
- Low
- Moderate
- High
Trust Management

Interaction Rules

Certificate Authority
- Delivering a certificate: Moderate or None
- Revoking a certificate: Moderate
- Requesting a cross-certification: High
- Accepting a cross-certification request: High

None
- Requesting a certificate: Moderate or None

3 Thresholds
- Low
- Moderate
- High
Trust Management

Interaction Rules

Certificate Authority
- Delivering a certificate: Moderate or None
- Revoking a certificate: Moderate
- Requesting a cross-certification: High
- Accepting a cross-certification request: High

None
- Requesting a certificate: Moderate or None

3 Thresholds
- Low
- Moderate
- High

Delivering certificate: \(\uparrow\) trust
Being cross-certified: \(\uparrow\) trust
Ignoring requests: \(\downarrow\) trust
Trust Modelling

\[f : \mathbb{N} \rightarrow \mathbb{N}_+ \]
\[x \mapsto \frac{x}{x + 10} \]

- Slow increase
- Fast decrease
Agent architecture

Agent architecture without MAKI
Agent architecture with MAKI
Wildfire Monitoring

Drones monitoring a wildfire executing MAKI
Q1: Does the TMS really benefits from MAKI?

Q2: Does the self-organization leads to the correct organization?
Q1: Does the TMS really benefit from MAKI?

Q2: Does the self-organization lead to the correct organization?

Simulation
Yet Another Multi-Agent Systems Simulator (YAMASS)
- In-house simulator
- Ongoing work
- Based on Mesa [3]
- Allows easy reproducibility
- Enforces agents positioning
Setup

Simulation of a MEAS executing MAKI in YAMASS
Red: CA, Black: None

- 10 agents
 - \leftrightarrow 4 possible CAs: A_6, A_7, A_8, A_9
 - \leftrightarrow 3 CAs: A_6, A_8, A_9
- All in communication range
- Application is emulated
Scenario I — None agent intrusion

None agent (A_0) is malicious

Trust variation without revocation

Trust variation with revocation
Scenario I — None agent intrusion

None agent (A_0) is malicious

Q1: Yes
Revocation → more effective exclusion

Trust variation without revocation

Trust variation with revocation

Proof-of-Concept
Scenario II — Malicious CAs coalition

All the CAs (A_6, A_8, A_9) are malicious

State of the system before the detection
Red: CA, Black: None
Scenario II — Malicious CAs coalition

All the CAs (A_6, A_8, A_9) are malicious

<table>
<thead>
<tr>
<th>Step: 701</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 7: Certificate (Issuer: 7, Subject: 7, ...)</td>
</tr>
<tr>
<td>Agent 0: Certificate Request (Source: 0, Destination: 7)</td>
</tr>
<tr>
<td>Agent 1: Certificate Request (Source: 1, Destination: 7)</td>
</tr>
<tr>
<td>Agent 3: Certificate Request (Source: 3, Destination: 7)</td>
</tr>
<tr>
<td>Agent 2: Certificate Request (Source: 2, Destination: 7)</td>
</tr>
<tr>
<td>Agent 4: Certificate Request (Source: 4, Destination: 7)</td>
</tr>
<tr>
<td>Agent 5: Certificate Request (Source: 5, Destination: 7)</td>
</tr>
</tbody>
</table>

State of the system after the detection
Red: CA, Black: None

Simplified excerpt of the execution trace
Scenario II — Malicious CAs coalition

All the CAs (A_6, A_8, A_9) are malicious

- **State of the system after the detection**
 - Red: CA, Black: None

- **System overtaken** → **Self-organization:** A_7 becomes a CA

- **Simplified excerpt of the execution trace**
 - step:701
 - agent:7:<>:CertAdvert(Certificate(issuer: 7, subject: 7, ...))
 - agent:0:=>:CertReq(src: 0, dest: 7)
 - agent:1:=>:CertReq(src: 1, dest: 7)
 - agent:3:=>:CertReq(src: 3, dest: 7)
 - agent:2:=>:CertReq(src: 2, dest: 7)
 - agent:4:=>:CertReq(src: 4, dest: 7)
 - agent:5:=>:CertReq(src: 5, dest: 7)

Q2: Yes

Proof-of-Concept 17/19

Arthur Baudet
Takeaway

- No standard for key management in decentralized autonomous systems
- MAKI: Multi-Agent Key Infrastructure is PKI for decentralized autonomous systems
 → Stronger hypotheses can be taken

- Slow start
- Few strong assurances
Future work

→ Self-Organization validation: Model checking
→ Proof-of-Concept: State of the art trust model
→ Sharing certificates: Blockchain-based solution
Thank you for your attention

Questions?

