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A COLLABORATIVE SECURITY APPROACH1.
Context, motivation and research 
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CONTEXT: SECURITY MONITORING

Figure 1: Security monitoring and data collection
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SECURITY MONITORING: A DATASCIENCE 
PERSPECTIVE

Does it 

scale?

Datascience can help hunting workflow automation [19]
‣ Structuring data processing allows automating some hunts;
‣ Clustering to reduce the number of alerts to process manually;
‣ Anomaly detection to prioritize investigations and limit the time needed to fine 

tune detection conditions.
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COLLABORATIVE DETECTION PROBLEM

Attacker
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SOC BSOC A

Performs attack

Collects logs

Performs attack

Collects logs

How to collaborate?

How to ensure trust?

Figure 2: Collaboration in intrusion detection
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COLLABORATIVE DETECTION: A TRUST PROBLEM

SOCs are hunting for the same incident…

▸  Attackers reuses malwares and attack patterns
▸  Clients may use same apps

• Widely used apps (e.g., Office Pack, SAP)
• Domain specific apps (e.g., hospitals, bank)

But:

▸  Datasets must not be shared due to sensitivity (GDPR, IP, National Regulation)
▸  SOCs may use AI with distinct approaches

• Different skillsets (datascience vs cybersecurity)
• Different performances
• Different training datasets (paid CTI feeds, different past incidents, different 

malwares)

7
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SECURITY MONITORING: A DATASCIENCE 
PERSPECTIVE

Limitations
‣ Each monitored system has its own monitoring tools and risks;
‣ Analysts have limited datascience knowledge and datascientists have limited 

cybersecurity knwoledge;
‣ Centralisation of security logs might faces to confidentiality requirements.

Datascience can help hunting workflow automation [19]
‣ Structuring data processing allows automating some hunts;
‣ Clustering to reduce the number of alerts to process manually;
‣ Anomaly detection to prioritize investigations and limit the time needed to 

fine tune detection conditions.
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RESEARCH QUESTION

Collaborating and sharing information is hard (privacy, security, availability...) [1]-[3]

R.Q: How to federate knowledge between non-trusting parties?

‣ What data should organizations collect locally?
‣ What part of that of that data should organization share with each other?
‣ How to share data between organizations (models, algorithms, sharing 

strategies)?

https://www.flaticon.com/
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AN OVERVIEW OF FEDERATED LEARNING2.
Topic definition, literature review and open 
issues
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Figure 3: FL for intrusion detection, an application to Industrial IoT [4] — © 
IEEE 2022 

Local operation

‣ Independent of the server for 

detection
‣ Faster and lower bandwidth 

consumption

Collaboration

‣ More data to train on
‣ Shares models not data (++ privacy)

1
1

RELEVANCE OF FEDERATED LEARNING
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2

OVERVIEW

"The Evolution of FL-based intrusion detection and mitigation: a Survey" 1 [4]
‣ Systematic Literature Review
‣ Four contributions

• Quantitative and qualitative structured analyses
• Reference architecture
• Taxonomy
• Open issues and research directions

RQs answered by the survey

‣ How are FIDSs used in different domains?
‣ What are the differences between FIDS architectures? 
‣ What is the state of the art of FIDSs? 

1. submitted Nov. 2021, accepted May 2022, published Jun. 2022
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‣ "Trending topic" since ~2018-2019
• exponential: more than doubled since the 

realization of the survey
‣ Very heterogeneous venues
‣ Heterogeneous community

1
3

QUANTITATIVE OVERVIEW
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Figure 4: Evolution of FIDSs — data from [4] © 
IEEE 2022
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Figure 5: Publications by domain — data from [4] 
© IEEE 2022

Since the survey
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QUALITATIVE OVERVIEW

Figure 6: Comparative overview of selected works [4] — © IEEE 2022

Key points:

▸ Mostly horizontal FL settings
▸ Often cross-silo, training on dedicated 

devices
▸ Mainly NIDS IT datasets
▸ Often NNs
▸ Few sophisticated aggregation 

algorithms
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OPEN ISSUES
and research directions

TRANSFERABILITY1.
Transfer knowledge between models from heterogeneous client.
‣ Train multiple variations of the same models [13];
‣ Transfer knowledge between use cases or environments [12];
‣ Finding trade-off between specialization and generalization/federation [7], [14].

SECURITY AND TRUST2.
Preventing FIDS to represent a threat.
‣ Improve model-poisoning detection [14];
‣ Use reputation systems to deal with untrusted participants [15];
‣ Protect aggregation with HE, MPC, or differential privacy [16];

DATASET REPRESENTATIVITY3.
Providing datasets that fit real-world situations.
‣ Provide datasets generated in federated settings (heterogeneous participants);
‣ Evaluate knowledge transfer (new behaviors learned by peers).

https://www.flaticon.com/
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OPEN ISSUES
and research directions

MODEL PERFORMANCE4.
Improving detection in regards of usual metrics (accuracy, precision, recall, …).
‣ Use GANs as a training input [5];
‣ Study the impact of hyper- [6] and meta-parameters on detection rate;
‣ Behavior modeling (protocol-mining, periodicity-mining, manual feature selection) [7]-[8].

MODEL CONVERGENCE5.
Preventing FIDS models to diverge
‣ Considering aggregation as an optimisation problem [14];
‣ Weighting mechanisms to improve the convergence [15];.

ADAPTABILITY AND SCALABILITY6.
Dealing with high client volume and constrained environments.
‣ Deal with constrained environments (compressed updates, fewer rounds) [10]-[11];
‣ Provide update strategies to keep with the evolution of attacks [10].

SELF-DEFENSE AND SELF-HEALING7.
Providing reaction, resilience, and sharing counter-measures.
‣ Provide automated or assisted mitigation strategy [9];
‣ Study the application of FL to improve mitigation;

https://www.flaticon.com/
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MOTIVATION

Transferability, adaptability, and trust are identified open issues in the research community.

‣ #1 and #2 are due to the differences between clients in cross-silo settings like intrusion 

detection.
• Organizations may process very different data and still require collaboration, thus 

producing very different models.
‣ Trust is particularly important in collaborative security context.
‣ Existing datasets for intrusion detection are created for a local-detection use case.

https://www.flaticon.com/
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RQ 1. How to federate data from heterogeneous sources?

RQ 2. How to trust participants and evaluate their performance?

RQ 3. How to weight each contribution for aggregation?

RQ 4. How to evaluate FIDSs? 

1
8

RESEARCH QUESTIONS
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EXPERIMENTS AND FUTURE WORKS3.
Addressed issues and contributions
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USE CASE: Collaborative NIDS in IT Networks

2
0

IT NETWORKS

Leverage NIDS capabilities 

to detect distributed 

threats in realistic IT 

networks.

Relevance of the use case

‣ "Easy" to build and to experiment on.

‣ A lot of existing works, allows comparison with related 

works.

‣ Virtualization enables reproducibility and modularity in 

experimentations.

Different heterogeneities

‣ Organizations may use different models for detection.

‣ Organizations may have differences in their training data 

and environments.
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DEALING WITH HETEROGENEITY

2
1

On-client data collection Learned nominal behavior Aggregated model

Figure 7a: hetereogeneity in FIDS
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DEALING WITH HETEROGENEITY

2
2

On-client data collection Learned nominal behavior By-cluster models

Figure 7b: hetereogeneity in FIDS
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DEALING WITH TRUST

2
3
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Figure 8a: trust in FIDS
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DEALING WITH TRUST: reputation system

2
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Figure 8b: trust in FIDS
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DEALING WITH TRUST: reputation system
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Figure 8c: trust in FIDS
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TRUST-FIDS1

‣Aim: tackle heterogeneity and lack of trust in FL-based collaboration. (RQ1-3)

‣ Means: 
• use clustering to group clients by data-similarity
• use reputation to iteratively build trust between clients

‣ How: introduce cross-evaluation between clients, which provides feedbacks on 

how each client views the other models.

 Collaboration project with another PhD student at IMT Atlantique who focus on reputation systems.
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Figure 9: evaluation in FIDSs
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FedITN

‣ Aim: provide tools dedicated to evaluate FIDSs and other collaborative IDSs (RQ1, 

RQ4)
• performance against heterogeneity;
• knowledge transfer between clients;
• model adaptability;
• generation capability;

‣ Means: 
• a new dataset with four network topologies 
• evaluation baselines and tools for reproducibility

https://www.flaticon.com/


cyber-cni.frLéo LAVAUR & Benjamin COSTE | cyberCNI.fr

CONCLUSION#.
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▸ Federated Learning for Collaborative IDSs:

• Addresses actual problems from the industry (e.g., SOC collaboration);
• Focus on heterogeneity and trust;
• Emphasis on evaluation, reproducibility, and sound experiments.

▸ Other research directions: 

• scalability, model selection, …

▸ Prospective vision:

• Opt-in and open collaboration;
• Federation of models of all kind;
• Magic collaboration.

3
0

CONCLUSION
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QUESTIONS ?

3
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Figure X: Different settings of FL by Yang et al. [20]
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COLLABORATION IN CYBERSECURITY

Collaborating and sharing information to cope with the increase in cyberattacks [1]-[3]

‣ Privacy risks – eg. information disclosure;
‣ Security risks – eg. revealing internals, poisoning;
‣ Availability – eg. single point of failure in centralized systems;
‣ Resources – eg. higher bandwidth consumption when sharing data;
‣ ...
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TRUST-FIDS Methodology

‣ Dataset: "standardized IDS datasets" [17] (UNSW-NB15, BoT-IoT, ToN-IoT, and 

CSE-CIC-IDS2018)
‣ Evaluation:

• Comparison with the SoA [18] on the same dataset 
• w and w/o clustering
• w and w/o reputation
• w and w/o poisoning attacks / neglecting participants

‣ Expected results:
• Clustering – the dataset is in four parts → four clusters at least
• Reputation – contribution-aware aggregation, detection of neglecting 

participants
• faster convergence, better results than without both

https://www.flaticon.com/
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TRUST-FIDS Architecture

Figure X:  Logical architecture of the Trust-FIDS approach
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FedITN Methodology

‣ Attacks: 
• found in common datasets  available in cyberrange 
• Implement only what is missing
• 55 attacks with variations for the underlying services, labelling following the MITRE 

ATT&CK®

‣ Heterogeneity: 
• Different topologies with different services, architecture (network segmentation), probe 

location, and cyber-maturity (eg. firewall rules)
‣ Evaluation:

• Metric comparison with other datasets (eg. NSL-KDD, CIC-IDS-201X, ...);
• Comparison on SoA [18] approaches with other datasets;

‣ Expected results:
• Existing approaches focusing on statistical heterogeneity might falter
• Complexity difference in topology will show if FL can really transfer knowledge
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FedITN Testbed and topologies
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Figure X: Airbus 
CyberRange

IT networks

Figure X: Topology 1, modified version of Airbus Cybersecurity’s default topologies
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Figure X: Exemple of considered attacks and according labels

FedITN Attacks
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Figure X: FIDS experimentation framework (WIP)

FedITN Experimentation pipeline
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MODEL WEIGHTING
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‣ data quality: what is the quality of the data the model has been trained on? 

• Difficult to define

• Possibly good metric for model weighting

‣ cyber-maturity: which confidence can I put in one participant's data?

• Arbitrarily attribute maturity to some clients to evaluate the impact on 

federation

• Ideally use that to create topologies in the future

‣ semantic metadata: what does this model contain, and what does mine lack?

• Improve model aggregation information about its content

• Balance to find with privacy

Potential leads

https://www.flaticon.com/
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