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1. A COLLABORATIVE SECURITY APPROACH

Context, motivation and research
question
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CONTEXT: SECURITY MONITORING
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Figure 1: Security monitoring and data collection
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SECURITY MONITORING: A DATASCIENCE
PERSPECTIVE

Datascience can help hunting workflow automation

> Structuring data processing allows automating some hunts;

I Clustering to reduce the number of alerts to process manually;

I Anomaly detection to prioritize investigations and limit the time needed to fine
tune detection conditions.

Does It
scale?
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COLLABORATIVE DETECTION PROBLEM
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Figure 2: Collaboration in intrusion detection

How to collaborate?
How to ensure trust?
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COLLABORATIVE DETECTION: A TRUST PROBLEM

SOCs are hunting for the same incident...
» Attackers reuses malwares and attack patterns
» Clients may use same apps
* Widely used apps (e.q., Office Pack, SAP)
* Domain specific apps (e.q., hospitals, bank)

But:
» Datasets must not be shared due to sensitivity (GDPR, IP, National Regulation)
» SOCs may use Al with distinct approaches
* Different skillsets (datascience vs cybersecurity)
* Different performances
* Different training datasets (paid CTI feeds, different past incidents, different
malwares)

@ |¢o LAVAUR & Benjamin COSTE | cyberCNL.fr ,
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SECURITY MONITORING: A DATASCIENCE
PERSPECTIVE

Limitations

I Each monitored system has its own monitoring tools and risks;

I Analysts have limited datascience knowledge and datascientists have limited
cybersecurity knwoledge;

I Centralisation of security logs might faces to confidentiality requirements.
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RESEARCH QUESTION

Collaborating and sharing information is hard (privacy, security, availability...)

R.Q: How to federate knowledge between non-trusting parties?

| What data should organizations collect locally?

| What part of that of that data should organization share with each other?
I How to share data between organizations (models, algorithms, sharing
strategies)?
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2. AN OVERVIEW OF FEDERATED LEARNING

Topic definition, literature review and open
Issues
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RELEVANCE OF FEDERATED LEARNING
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Figure 3: FL for intrusion detection, an application to Industrial loT [4] — ©
IEEE 2022
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OVERVIEW

"The Evolution of FL-based intrusion detection and mitigation: a Survey™
| Systematic Literature Review
I Four contributions

* Quantitative and gualitative structured analyses

* Reference architecture

* Taxonomy

* Open issues and research directions

RQs answered by the survey

I How are FIDSs used in different domains?

I What are the differences between FIDS architectures?
I What is the state of the art of FIDSs?

submitted Nov. 2021, accepted May 2022, published Jun. 2022
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QUANTITATIVE OVERVIEW
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Figure 5: Publications by domain — data from [4]
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QUALITATIVE OVERVIEW
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CYBERCHI

Key points:
» Mostly horizontal FL settings

» Often cross-silo, training on dedicated

devices
» Mainly NIDS IT datasets
» Often NNs

» Few sophisticated aggregation

algorithms

1
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OPEN ISSUES

and research directions

1. TRANSFERABILITY

Transfer knowledge between models from heterogeneous client.

> Train multiple variations of the same models ;

! Transfer knowledge between use cases or environments ;

! Finding trade-off between specialization and generalization/federation ,

2. SECURITY AND TRUST

Preventing FIDS to represent a threat.

! Improve model-poisoning detection ;
1 Use reputation systems to deal with untrusted participants ;

I Protect aggregation with HE, MPC, or differential privacy ;

3. DATASET REPRESENTATIVITY

Providing datasets that fit real-world situations.
! Provide datasets generated in federated settings (heterogeneous participants);

! Evaluate knowledge transfer (new behaviors learned by peers).

~ Léo LAVAUR & Benjamin COSTE | cyberCNL.fr
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OPEN ISSUES

and research directions
4. MODEL PERFORMANCE

Improving detection in regards of usual metrics (accuracy, precision, recall, ...).
0 Use GANSs as a training input [5];
0 Study the impact of hyper- and meta-parameters on detection rate;

! Behavior modeling (protocol-mining, periodicity-mining, manual feature selection)

5. MODEL CONVERGENCE

Preventing FIDS models to diverge
! Considering aggregation as an optimisation problem ;
!l Weighting mechanisms to improve the convergence ;.

6. ADAPTABILITY AND SCALABILITY

Dealing with high client volume and constrained environments.
! Deal with constrained environments (compressed updates, fewer rounds) -
! Provide update strategies to keep with the evolution of attacks

{. SELF-DEFENSE AND SELF-HEALING

Providing reaction, resilience, and sharing counter-measures.
! Provide automated or assisted mitigation strategy [9];
! Study the application of FL to improve mitigation;

~ Léo LAVAUR & Benjamin COSTE | cyberCNL.fr
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MOTIVATION

Transferability, adaptability, and trust are identified open issues in the research community.

| #1 and #2 are due to the differences between clients in cross-silo settings like intrusion
detection.
* Organizations may process very different data and still require collaboration, thus
producing very different models.
I Trust is particularly important in collaborative security context.
| Existing datasets for intrusion detection are created for a local-detection use case.
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RESEARCH QUESTIONS

RQ 1. How to federate data from heterogeneous sources?
RQ 2. How to trust participants and evaluate their performance?
RQ 3. How to weight each contribution for aggregation?

RQ 4. How to evaluate FIDSS?
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3. EXPERIMENTS AND FUTURE WORKS

Addressed iIssues and contributions
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USE CASE: Collaborative NIDS in IT Networks

IT NETWORKS

Leverage NIDS capabilities
to detect distributed
threats in realistic IT

networks.

@ |60 LAVAUR & Benjamin COSTE | cyberCNL.fr

Relevance of the use case
| "Easy" to build and to experiment on.

U A lot of existing works, allows comparison with related
works.

! Virtualization enables reproducibility and modularity in
experimentations.

Different heterogeneities

o VPP -, - «f o I [ Y < [y

I JiyainzZacorisTiray UST ulriciciicirTouciS Ul aetection.

U Organizations may have differences in their training data
and environments.
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DEALING WITH HETEROGENEITY

8 >
= Ba . g @
1 @ o = &
";‘m’ """ E >
B S ak & Eafa g A
On-client data collection Learned nominal behavior Aggregated model

'PL Léo LAVAUR & Benjamin COSTE | cyberCNidrure 7a: hetereogeneity in FIDS 2

Flaticon ]_


https://www.flaticon.com/

DEALING WITH HETEROGENEITY
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DEALING WITH TRUST

>

‘@

F

C

W

-] > >

m

p o)

A

Q

e’

On-client data collection Learned nominal behavior Cluster model

,_ ?L Léo LAVAUR & Benjamin COSTE | cyberCNL.fr Figure 8a: trust in FIDS 2

YEERCHMI|

Flaticon 3


https://www.flaticon.com/

?L Léo LAVAUR & Benjamin COSTE | cyberCNI.fr Figure 8b: trust in FIDS

DEALING WITH TRUST: reputation system
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DEALING WITH TRUST: reputation system
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TRUST-FIDS

> Aim: tackle heterogeneity and lack of trust in FL-based collaboration. (RQ1-3)

| Means:
* use clustering to group clients by data-similarity
* use reputation to iteratively build trust between clients

| How: introduce cross-evaluation between clients, which provides feedbacks on
how each client views the other models.

ollaboration project with another PhD student at IMT Atlantique who focus on reputation systems.
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GENERATING DATA
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FedITN

| Aim: provide tools dedicated to evaluate FIDSs and other collaborative IDSs (RQ1,
RQ4)
* performance against heterogeneity;
knowledge transfer between clients;
model adaptability;
* generation capability;

| Means:
* a new dataset with four network topologies
* evaluation baselines and tools for reproducibility
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#. CONCLUSION

Outcomes and perspectives

@ | 60 LAVAUR & Benjamin COSTE | cyberCNI.fr cyber-cni.fr



http://cyber-cni.fr/

CONCLUSION

» Federated Learning for Collaborative IDSs:
 Addresses actual problems from the industry (e.g., SOC collaboration);
* Focus on heterogeneity and trust;
* Emphasis on evaluation, reproducibility, and sound experiments.

» Other research directions:
* scalability, model selection, ...

» Prospective vision:
 Opt-in and open collaboration;
 Federation of models of all kind;
 Magic collaboration.
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QUESTIONS ?
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Features

(a) Horizontal Federated Learning

Figure X: Different settings of FL by Yang et al. [20]
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(b) Vertical Federated Learning
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(c) Federated Transfer Learning

Transfer Learning
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COLLABORATION IN CYBERSECURITY

Collaborating and sharing information to cope with the increase in cyberattacks

I Privacy risks - eg. information disclosure;

| Security risks - eg. revealing internals, poisoning;

I Availability - eg. single point of failure in centralized systems;

| Resources - eg. higher bandwidth consumption when sharing data;
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TRUST-FIDS Methodology

> Dataset: "standardized IDS datasets” (UNSW-NB15, BoT-loT, ToN-loT, and
CSE-CIC-1D52018)
! Evaluation:
* Comparison with the SoA on the same dataset
* w and w/o clustering
* w and w/o reputation
* w and w/o poisoning attacks / neglecting participants
! Expected results:
* Clustering —the dataset is in four parts — four clusters at least
* Reputation - contribution-aware aggregation, detection of neglecting
participants
* faster convergence, better results than without both

@ &0 LAVAUR & Benjamin COSTE | cyberCNI.fr \
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TRUST-FIDS Architecture
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Figure X: Logical architecture of the Trust-FIDS approach
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FedITN Methodology

| Attacks:
* found in common datasets available in cyberrange
* Implement only what is missing
* 55 attacks with variations for the underlying services, labelling following the MITRE
ATT&CK®
! Heterogeneity:
* Different topologies with different services, architecture (network segmentation), probe
location, and cyber-maturity (eg. firewall rules)
! Evaluation:
* Metric comparison with other datasets (eg. NSL-KDD, CIC-IDS-201X, ...);
* Comparison on SoA approaches with other datasets;
U Expected results:
* Existing approaches focusing on statistical heterogeneity might falter
* Complexity difference in topology will show if FL can really transfer knowledge
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FedlTN Testbed and topologies

Figure X: Airbus
CyberRange

Topology 1

Expert topology with good segmentation.
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Figure X: Topology 1, modified version of Airbus Cybersecurity’s default topologies
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FedITN Attacks

Attack Category Target ATT&CK Technique ATT&CK Tactic
Bruteforce FTP Bruteforce FTP Server Password Guessing (T1110.001) Credential Access (TA0006)
Bruteforce lopin form Bruteforce Web Server w/ login form Password Guessing (T1110.001) Credential Access (TA0006)
Bruteforce MySQL Bruteforce MySQL server Password Guessing (T1110.001) Credential Access (TA0006)
Bruteforce RDP Bruteforce Windows Host w/ RDP server  Password Guessing (T1110.001) Credential Access (TA0006)
Bruteforce SMB Bruteforce Windows Host w/ SMB server  Password Guessing (T1110.001) Credential Access (TA0006)
Bruteforce SSH Bruteforce SSH server Password Guessing (T1110.001) Credential Access (TA0006)
Bruteforce Telnet Bruteforce Telnet server Password Guessing (T1110.001) Credential Access (TA0006)
Bruteforce VNC Bruteforce VNC server Password Guessing (T1110.001) Credential Access (TA0006)
DNS amplification DoS Any host Reflection Amplification (T1498.002) Impact (TA0040)
ICMP IGMP flood DoS Any host Direct Network Flood (T1498.001) Impact (TA0040)
PUSH ACK flood Dos Any host Direct Network Flood (T1498.001) Impact (TA0040)
R.U.D.Y. DoS Web Server w/ form Service Exhaustion Flood (T1499.002) Impact (TA0040)
slowloris DoS Web Server Service Exhaustion Flood (T1499.002) Impact (TA0040)
SYN flood DoS Any host OS Exhaustion Flood (T1499.001) Impact (TA0040)
TCP killer DoS Any host Application or System Exploitation (T1499.004) Impact (TA0040)
TCP RST flood DoS Any host Direct Network Flood (T1498.001) Impact (TA0040)
UDP flood DoS Any host Direct Network Flood (T1498.001) Impact (TA0040)

ARP Cache Poisoning (T1557.002) Credential Access (TA0006)
ZIP bomb DoS Any host Transmitted Data Manipulation (T1565.002) Collection (TA0009)

OS Exhaustion Flood (T1499.001) Impact (TA0040)

Figure X: Exemple of considered attacks and according labels
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FedlITN Experimentation pipeline

BERCHI Flaticon 4
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Figure X: FIDS experimentation framework (WIP)
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MODEL WEIGHTING

Potential leads

| data quality: what is the quality of the data the model has been trained on?
* Difficult to define
* Possibly good metric for model weighting

I cyber-maturity: which confidence can | put in one participant's data?

* Arbitrarily attribute maturity to some clients to evaluate the impact on
federation

* |ldeally use that to create topologies in the future

| semantic metadata: what does this model contain, and what does mine lack?
* Improve model aggregation information about its content
* Balance to find with privacy
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