Federated Learning as an Enabler for **Collaborative Security between not Fully-Trusting Distributed Parties**

Léo LAVAUR (Chaire CNI) & Benjamin COSTE (Airbus Cyber) Marc-Oliver PAHL, Yann BUSNEL, Fabien AUTREL

2022/11/15 — C&ESAR

AIRBUS AMOSSYS

TABLE OF CONTENT

1. A collaborative security approach

Context, motivation, and research questions

An overview of Federated Learning Topic definition, literature review, and open issues

Experiments and future works Addressed issues and contributions

1. A COLLABORATIVE SECURITY APPROACH Context, motivation and research

question

CONTEXT: SECURITY MONITORING

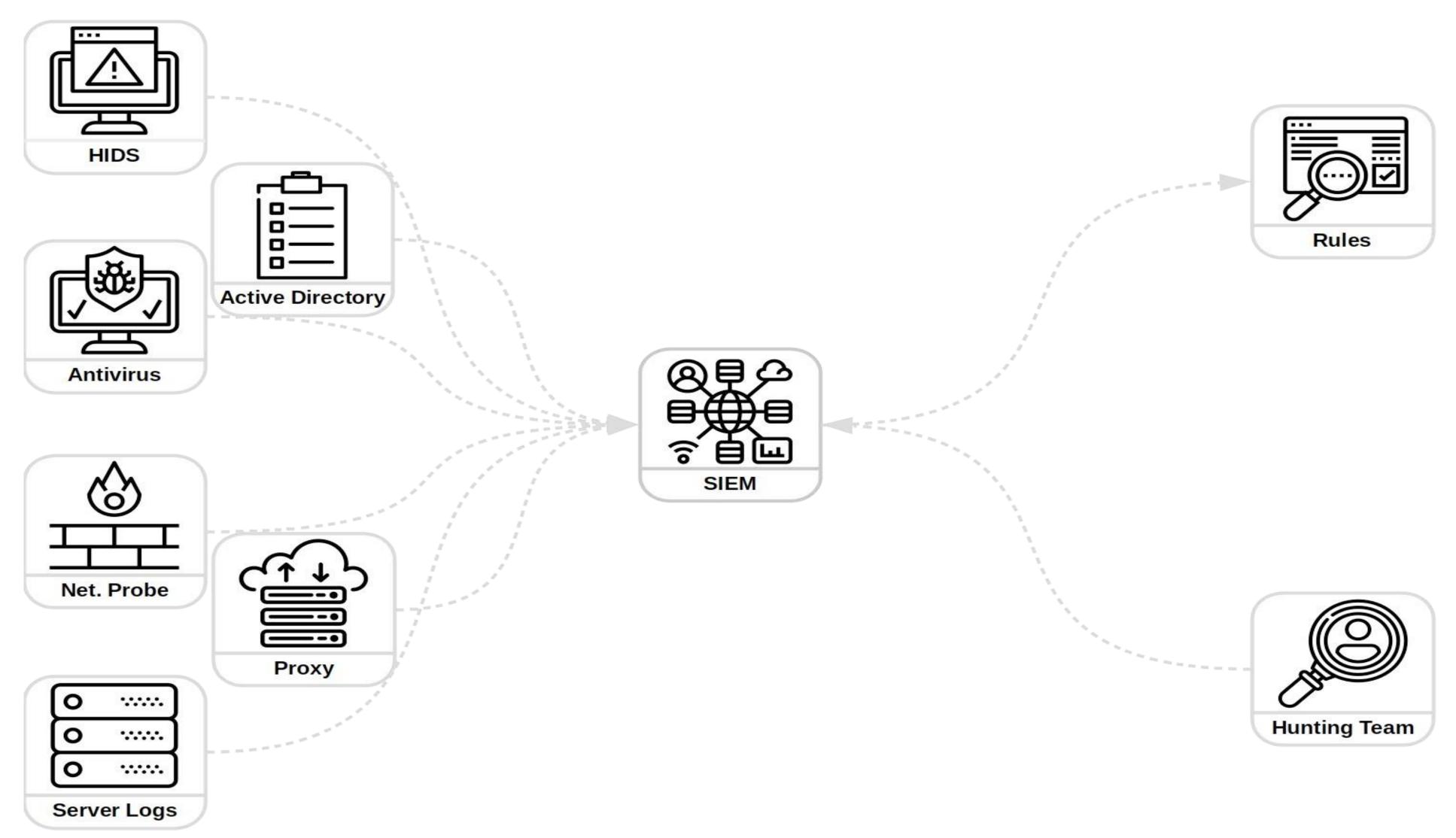


Figure 1: Security monitoring and data collection

SECURITY MONITORING: A DATASCIENCE PERSPECTIVE

Datascience can help hunting workflow automation [19]

- Structuring data processing allows automating some hunts;
- ^I Clustering to reduce the number of alerts to process manually;
- Anomaly detection to prioritize investigations and limit the time needed to fine tune detection conditions.

Does it scale?

COLLABORATIVE DETECTION PROBLEM

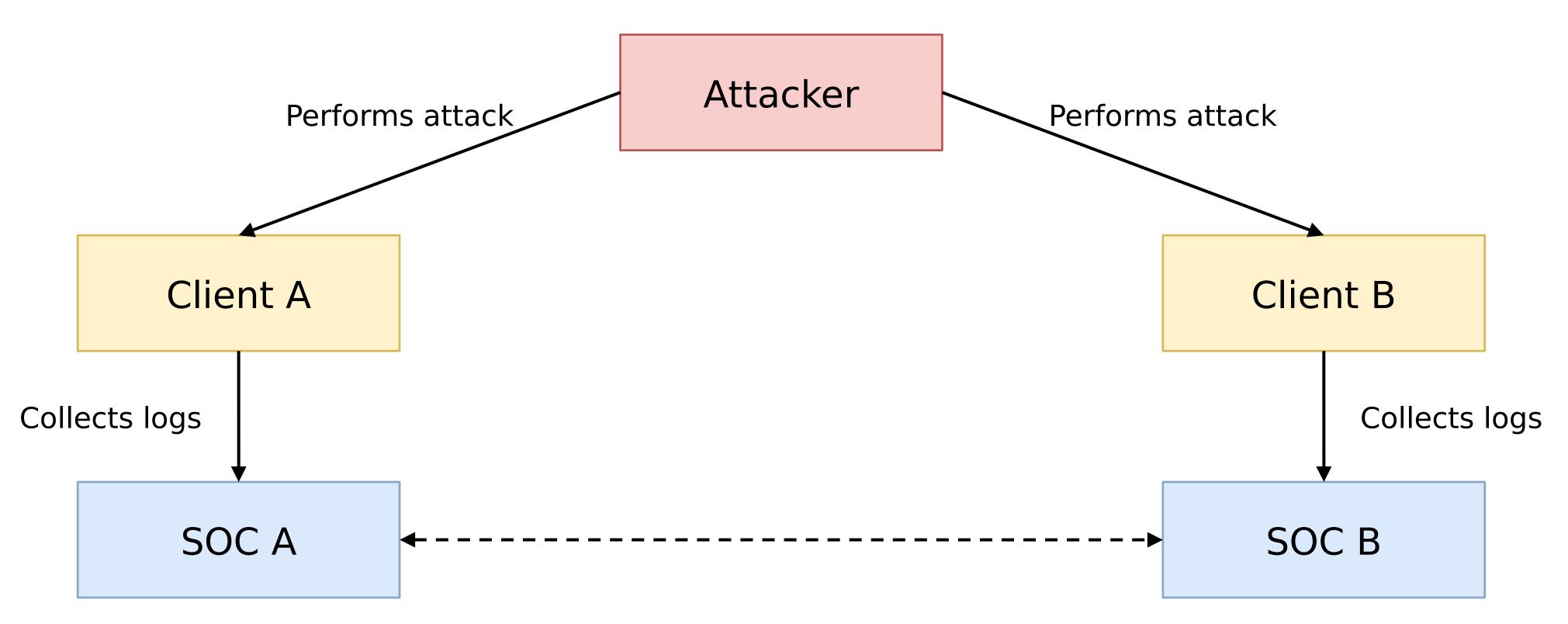


Figure 2: Collaboration in intrusion detection

How to collaborate? How to ensure trust?

COLLABORATIVE DETECTION: A TRUST PROBLEM

SOCs are hunting for the same incident...

- Attackers reuses malwares and attack patterns
- Clients may use same apps
 - Widely used apps (e.g., Office Pack, SAP)
 - Domain specific apps (e.g., hospitals, bank)

But:

- Datasets must not be shared due to sensitivity (GDPR, IP, National Regulation) SOCs may use AI with distinct approaches
- - Different skillsets (datascience vs cybersecurity)
 - Different performances
 - Different training datasets (paid CTI feeds, different past incidents, different malwares)

SECURITY MONITORING: A DATASCIENCE PERSPECTIVE

Datascience can help hunting workflow automation [19]

- ^I Structuring data processing allows automating some hunts;
- ^I Clustering to reduce the number of alerts to process manually;
- ^I Anomaly detection to prioritize investigations and limit the time needed to fine tune detection conditions.

Limitations

- Each monitored system has its own monitoring tools and risks; Analysts have limited datascience knowledge and datascientists have limited
- cybersecurity knwoledge;
- Centralisation of security logs might faces to confidentiality requirements.

RESEARCH QUESTION

Collaborating and sharing information is hard (privacy, security, availability...) [1]-[3]

R.Q: How to federate knowledge between non-trusting parties?

- What data should organizations collect locally?
- strategies)?

¹ What part of that of that data should organization share with each other? How to share data between organizations (models, algorithms, sharing)

AN OVERVIEW OF FEDERATED LEARNING 2. Topic definition, literature review and open

issues

RELEVANCE OF FEDERATED LEARNING

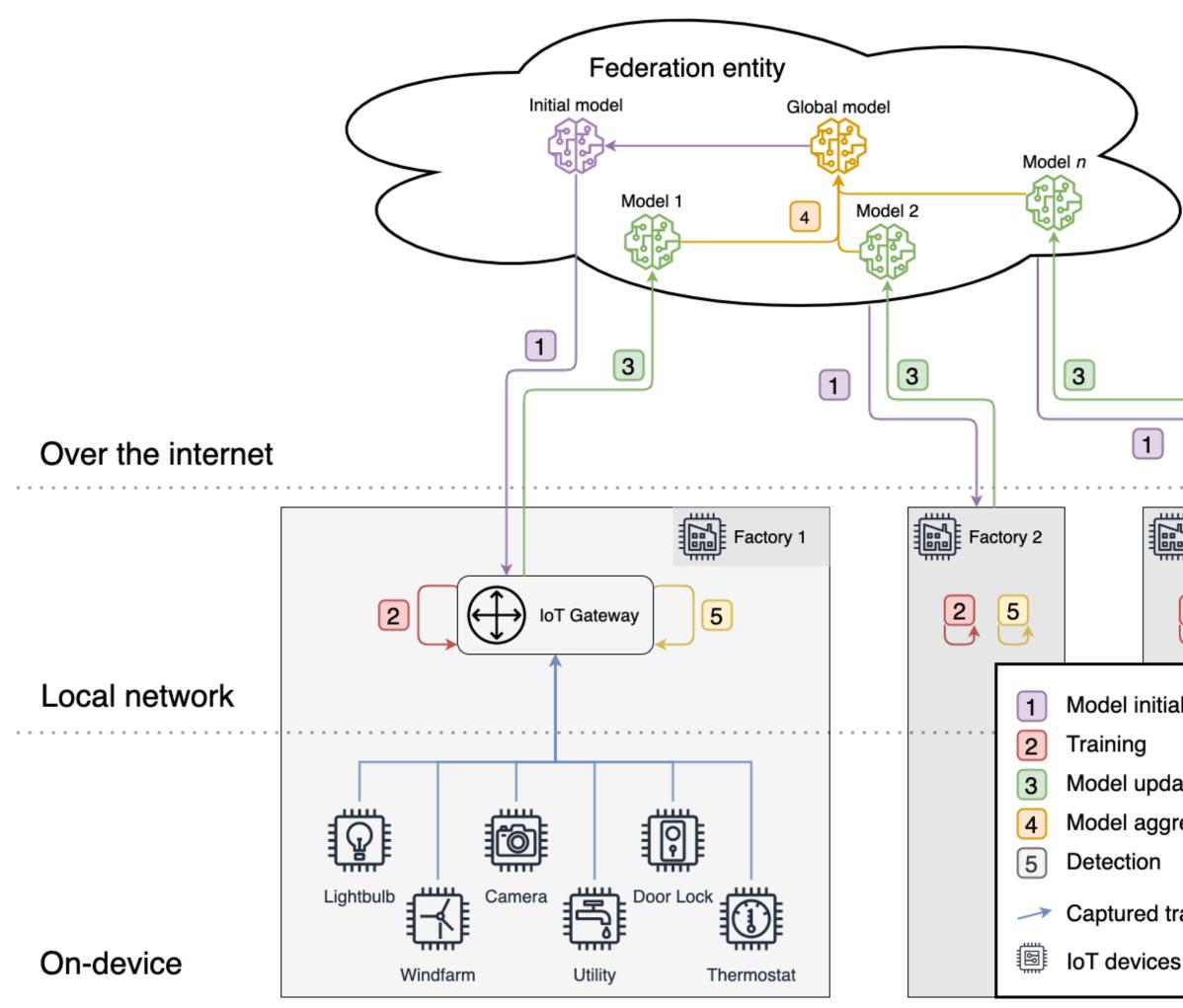


Figure 3: FL for intrusion detection, an application to Industrial IoT [4] — \mathbb{C} **IEEE 2022 ()**

Léo LAVAUR & Benjamin COSTE | cyberCNI.fr

CYBERCNI

1	
Factory n	
2 5	
nitialization	
updating	
aggregation	
on	
ed traffic	
ices	

Local operation

- Independent of the server for detection
- **Faster and lower bandwidth** consumption

Collaboration

- More data to train on
- Shares models not data (++ privacy)

OVERVIEW

"The Evolution of FL-based intrusion detection and mitigation: a Survey" ¹[4]

- Systematic Literature Review
- Four contributions
 - Quantitative and qualitative structured analyses
 - Reference architecture
 - Taxonomy
 - Open issues and research directions

RQs answered by the survey

- How are FIDSs used in different domains?
- What are the differences between FIDS architectures?
- □ What is the state of the art of FIDSs?

¹ submitted Nov. 2021, accepted May 2022, published Jun. 2022

QUANTITATIVE OVERVIEW

- "Trending topic" since ~2018-2019
 - exponential: more than doubled since the realization of the survey
- Very heterogeneous venues
- Heterogeneous community

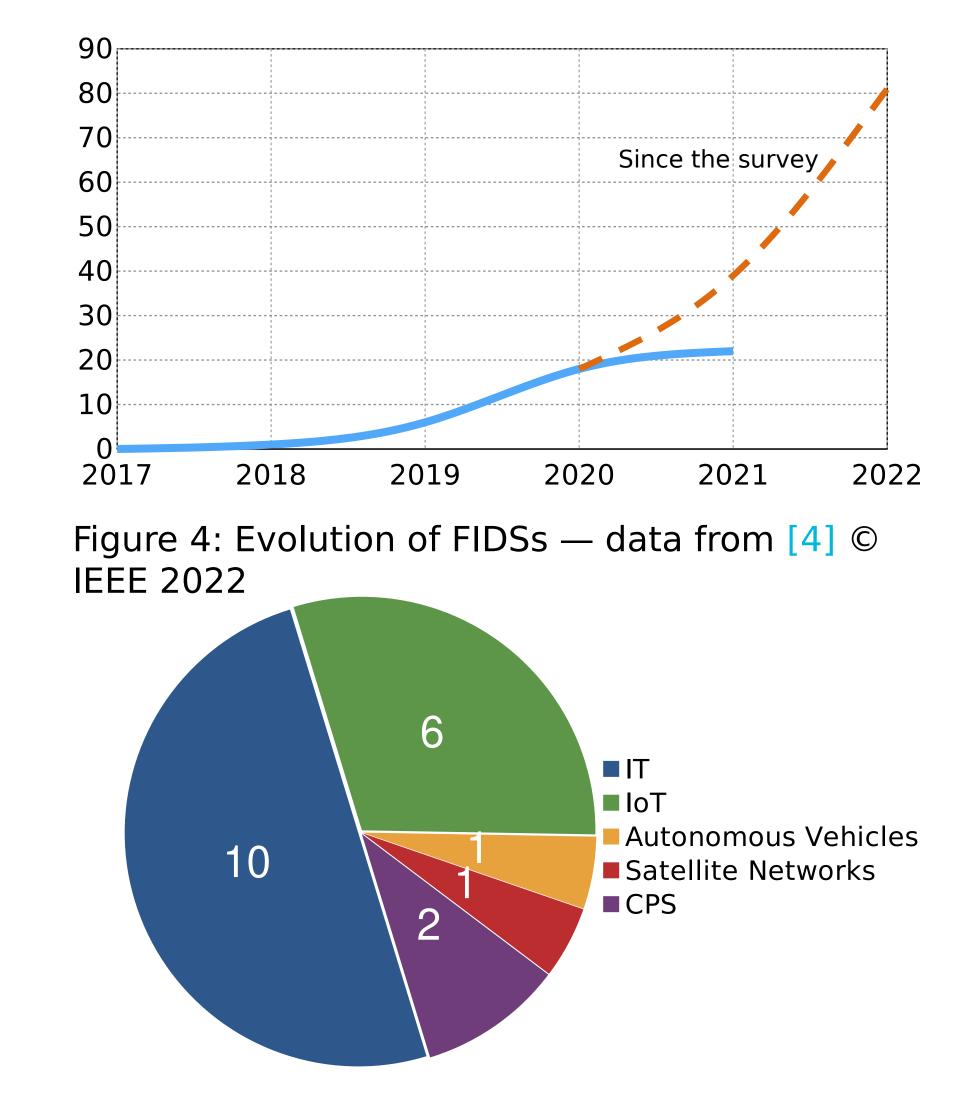


Figure 5: Publications by domain — data from [4] © IEEE 2022

lcon

QUALITATIVE OVERVIEW

	Testentes Honton Ref	Lapter Light and Li	Scatting of	ic Lown	Column .	Sector Altrach	A Changeling	allahe Maketa	Cites in discourses	Andra Standard	AND ACTIONS	Solitands Deletino	a viners	AN ANT	Training location	Data type	Dataset
2018	Pahl et al. [9]	•	0 0		overar		0 0	٠	•	• 0	0 0	00	0	00	Device	IoT network traffic (middleware)	Generated
2019	Rathore et al. [8]	•	0 0	0	0	0	0 0	٠	•	0	• •	00	•	••	Edge-controller (SDN)	Network traffic (SDN)	NSL-KDD [55]
2019	Schneble et al. [10]	•	0 0	0	0	0	0 0	0	•	0 0	•	0 0	٠	0 0	Gateway	Sensor values	MIMIC [78]
019	Nguyen, Marchal, et al. [11]	•	0 0	0	0	0	0 0	•	0	• 0	0 0	0 0	0	0 0	Gateway	IoT network traffic	Generated
019	Zhao et al. [12]	0	0 0	•	0	0	0 0	•	0	0.	0	0 0	0	0 0	Gateway	Network traffic (encrypted)	CICIDS2017 [79] ISCXVPN2016 [80] ISCXTor2016 [81]
019	Cetin et al. [13]	•	0 0	0	Ö	0	0 0	0	•	0	0	0 0	0	00	Gateway	Network traffic (WIFI)	AWID [56]
020	Li, Wu, et al. [14]	•	0 0	0	0	0	• 0	0	•	0 0	•	0 0	0	0 0	Gateway	MODBUS	CPS dataset [82]
020	Chen, Zhang, et al. [15]	•	0 0	0	0	0	0 0	0	•	0	0	0 0	0	0 0	Gateway	Network traffic	KDD 99 [54]
020	Zhang, Lu, et al. [16]	•	0 0	0	0	0	0 0	0	0	• 0	0 0	0 0	•	0 0	Gateway	Sensor values	Generated
2020	Fan et al. [17]	0	• •	0	0	0	0 0	•	0	• 0	0 0	0 0	0	0 0	Gateway (MEC)	IoT network traffic	CICIDS2017 [79] NSL-KDD [55] Generated
2020	Rahman et al. [18]	•	0 0	0	0	0	0 0	0	•	0	0	00	0	0 0	Device	IoT Network traffic	NSL-KDD [55]
2020	Sun, Ochiai, et al. [19]	•	0 0	0	0	0	0 0	•	0	0	0	00	0	0 0	Gateway	Network traffic	LAN-Security Monitoring Project [83
2020	Al-Marri et al. [20]	0	0.0	0	•	0	0 0	0	•	0	0	0 0	0	0 0	Gateway	Network traffic	NSL-KDD [55]
2020	Kim, Cai, et al. [21]	•	0 0	0	0	0	0 0	Ó	•	0	0	00	0	0 0	Gateway	Network traffic	NSL-KDD [55]
2020	Qin, Poularakis, et al. [22]	•	0.0	0	0	0	0 0	•	•	0	0	00	0	• •	Gateway (SDN)	Network traffic	CICIDS2017 [79] ISCX Botnet 2014 [84 CICIDS2017 [79]
2020	Chen, Lv, et al. [23]	•	0 0	0	0	0	0 0	0	•	0	0	0 0	0	• •	Gateway	Network traffic	KDD 99 [54] WSN-DS [85]
2020	Hei et al. [24]	•	0.0	0	0	0	0 0	0	•	0	0	0 0	٠	0 0	Device	Network traffic	KDD 99 [54]
2020	Li, Zhou, et al. [25]	•	0 0	0	0	0	• •	0	0	0	0	• •	0	0 0	Gateway	Network traffic	Generated
2021	Liu et al. [26]	•	0 0	0	0	•	• 0	0	•	0 0	0 0	• •	0	0 0	Device	Network traffic	KDD 99 [54]
2021	Popoola et al. [27]	•	0 0	0	0	0	0 0	0	•	• 0	0 0	00	٠	0 0	Gateway	IoT Network traffic	Bot-IoT [86] N-BaloT [87]
2021	Qin and Kondo [28]	•	0 0	0	0	0	0 0	•	•	0.	0	0 0	0	0 0	Device	Network traffic	NSL-KDD (55)
2021	Sun, Esaki, et al. [29]	•	0 0	0	0	0	0 0	•	0	0	0	0 0	0	0 0	Gateway	Network traffic	LAN-Security Monitoring Project [8]

Figure 6: Comparative overview of selected works [4] - @ IEEE 2022

Local Algorithm	Federation Algorithm						
BIRCH K-means	Parameter addition						
ANN	Vector concatenation						
MLP	Weight and biases average						
GRU	FedAvg						
FC (shared layers) \rightarrow FC	Weight and biases average						
SAE	FedAvg						
$\text{CNN-GRU} \rightarrow \text{MLP}$	Homomorphic parameter addition						
DAGMM	Parameter addition						
ANN	CDW_FedAvg						
CNN	Parameter aggregation						
ANN	FedAvg						
CNN	Parameter aggregation						
ANN	FedAvg						
MLP	FedAvg						
BNN	SignSGD						
GRU-SVM	FedAGRU						
MLP	FedAvg						
CNN	Homomorphic parameter addition						
MLP	Parameter aggregation						
ANN	FedAvg						
ONLAD [89] (ELM + AE)	FedAvg						
CNN	Parameter aggregation						

Key points:

- Mostly horizontal FL settings
- Often cross-silo, training on dedicated devices
- Mainly NIDS IT datasets
- ► Often NNs
- Few sophisticated aggregation algorithms

OPEN ISSUES and research directions

1. TRANSFERABILITY

Transfer knowledge between models from heterogeneous client.

- Train multiple variations of the same models [13];
- ^[] Transfer knowledge between use cases or environments [12];
- ¹ Finding trade-off between specialization and generalization/federation [7], [14].

2. SECURITY AND TRUST

Preventing FIDS to represent a threat.

- Improve model-poisoning detection [14];
- ¹ Use reputation systems to deal with untrusted participants [15];
- ¹ Protect aggregation with HE, MPC, or differential privacy [16];

3. DATASET REPRESENTATIVITY

Providing datasets that fit real-world situations.

- ¹ Provide datasets generated in federated settings (heterogeneous participants);
- Evaluate knowledge transfer (new behaviors learned by peers).

ments [12]; ralization/federation [7], [14].

rticipants <mark>[15]</mark>; privacy <mark>[16]</mark>;

(heterogeneous participants); ned by peers).

OPEN ISSUES and research directions

MODEL PERFORMANCE

Improving detection in regards of usual metrics (accuracy, precision, recall, ...).

- Use GANs as a training input [5];
- ¹ Study the impact of hyper- [6] and meta-parameters on detection rate;
- Behavior modeling (protocol-mining, periodicity-mining, manual feature selection) [7]-[8].

MODEL CONVERGENCE

Preventing FIDS models to diverge

- Considering aggregation as an optimisation problem [14];
- Weighting mechanisms to improve the convergence [15];.

6. ADAPTABILITY AND SCALABILITY

Dealing with high client volume and constrained environments. Deal with constrained environments (compressed updates, fewer rounds) [10]-[11]; Provide update strategies to keep with the evolution of attacks [10].

SELF-DEFENSE AND SELF-HEALING

Providing reaction, resilience, and sharing counter-measures.

- Provide automated or assisted mitigation strategy [9];
- Study the application of FL to improve mitigation;

CYBERCN

- ¹ #1 and #2 are due to the differences between clients in cross-silo settings like intrusion detection.
 - Organizations may process very different data and still require collaboration, thus producing very different models.
- ¹ Trust is particularly important in collaborative security context.
- Existing datasets for intrusion detection are created for a local-detection use case.

MOTIVATION

Transferability, adaptability, and trust are identified open issues in the research community.

RESEARCH QUESTIONS

- **RQ 1.** How to federate data from heterogeneous sources?
- **RQ 2.** How to trust participants and evaluate their performance?
- **RQ 3.** How to weight each contribution for aggregation?
- **RQ 4.** How to evaluate FIDSs?

3. EXPERIMENTS AND FUTURE WORKS Addressed issues and contributions

Sécurité des infr

Léo LAVAUR & Benjamin COSTE | cyberCNI.fr

astructures critiques

USE CASE: Collaborative NIDS in IT Networks

IT NETWORKS

Leverage NIDS capabilities to detect distributed threats in realistic IT networks.

Relevance of the use case

- "Easy" to build and to experiment on. \bigsqcup
- \Box works.
- Virtualization enables reproducibility and modularity in experimentations.

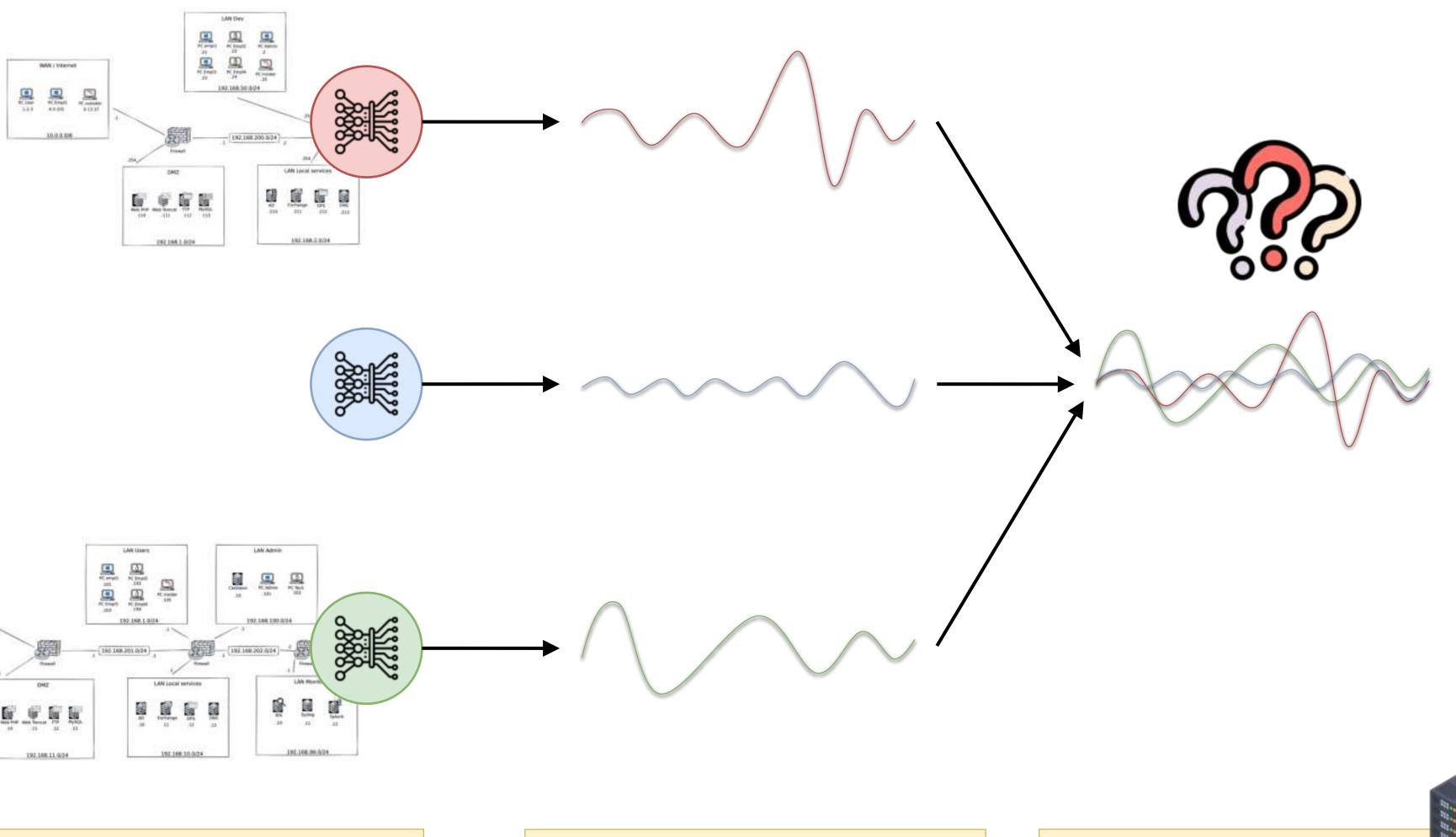
Different heterogeneities

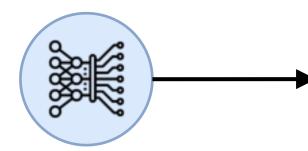
- Organizations may use different models for detection.
- Organizations may have differences in their training data and environments.

Léo LAVAUR & Benjamin COSTE | cyberCNI.fr

A lot of existing works, allows comparison with related

DEALING WITH HETEROGENEITY







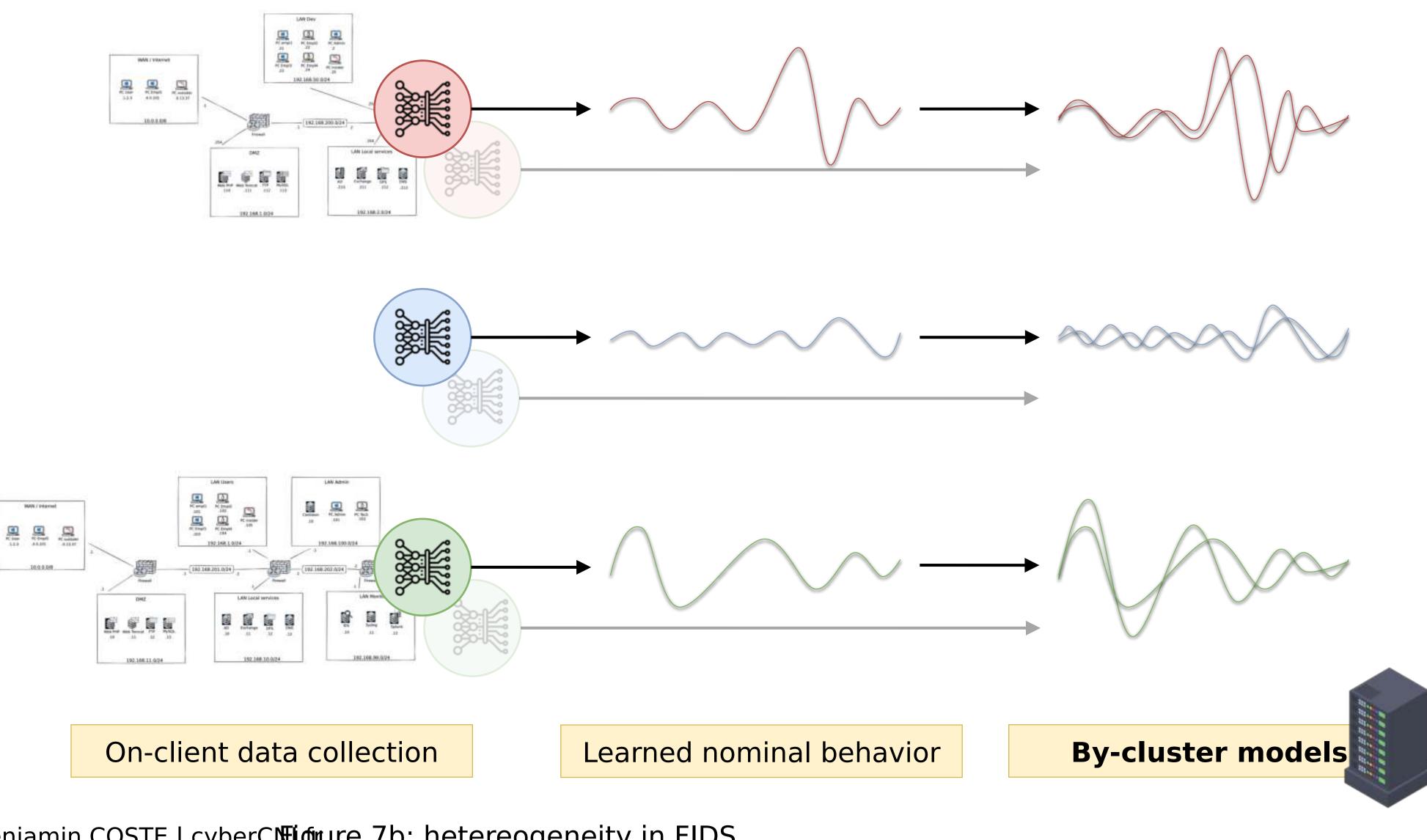
On-client data collection

Léo LAVAUR & Benjamin COSTE | cyberClffigrure 7a: hetereogeneity in FIDS

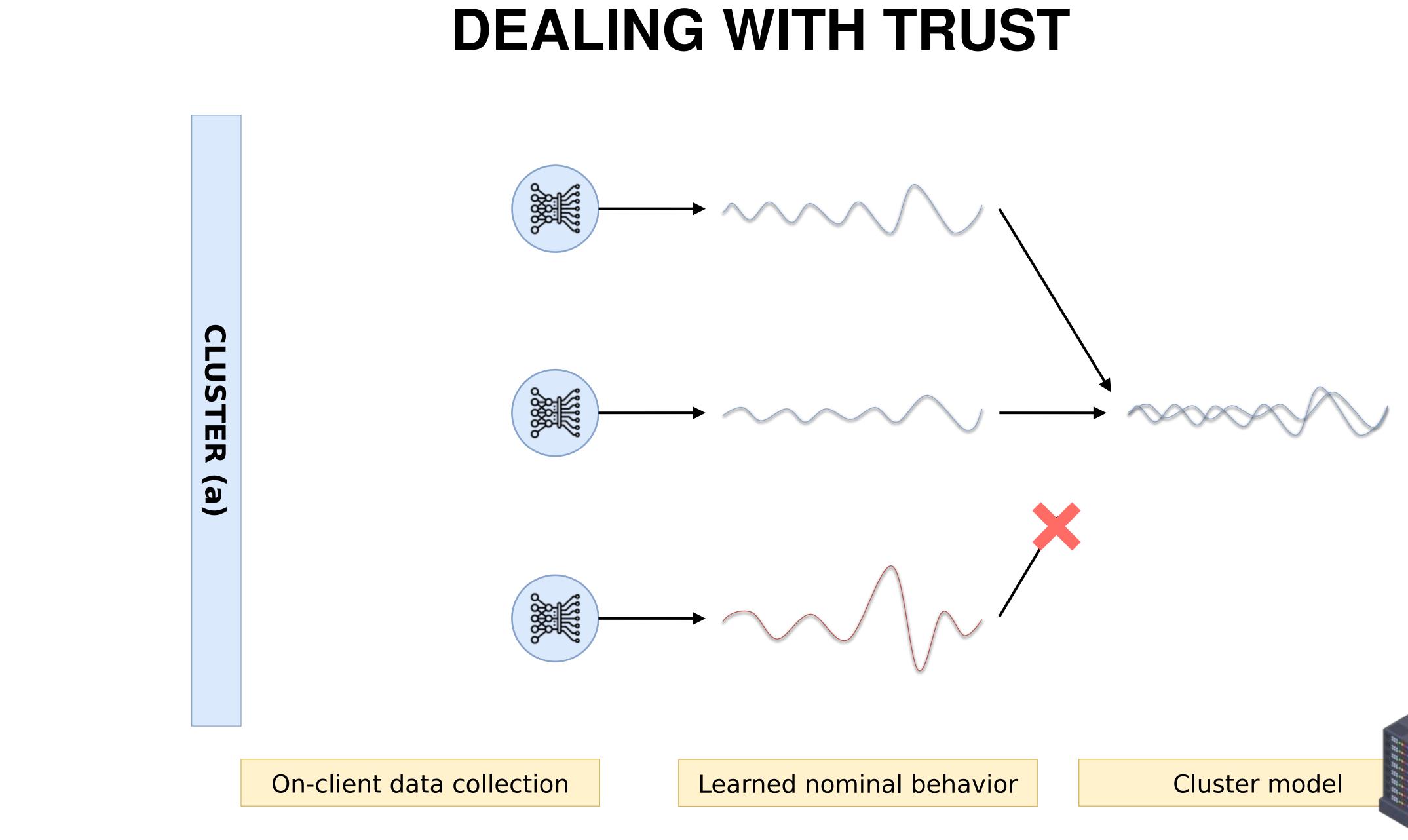
Learned nominal behavior

Aggregated model

DEALING WITH HETEROGENEITY

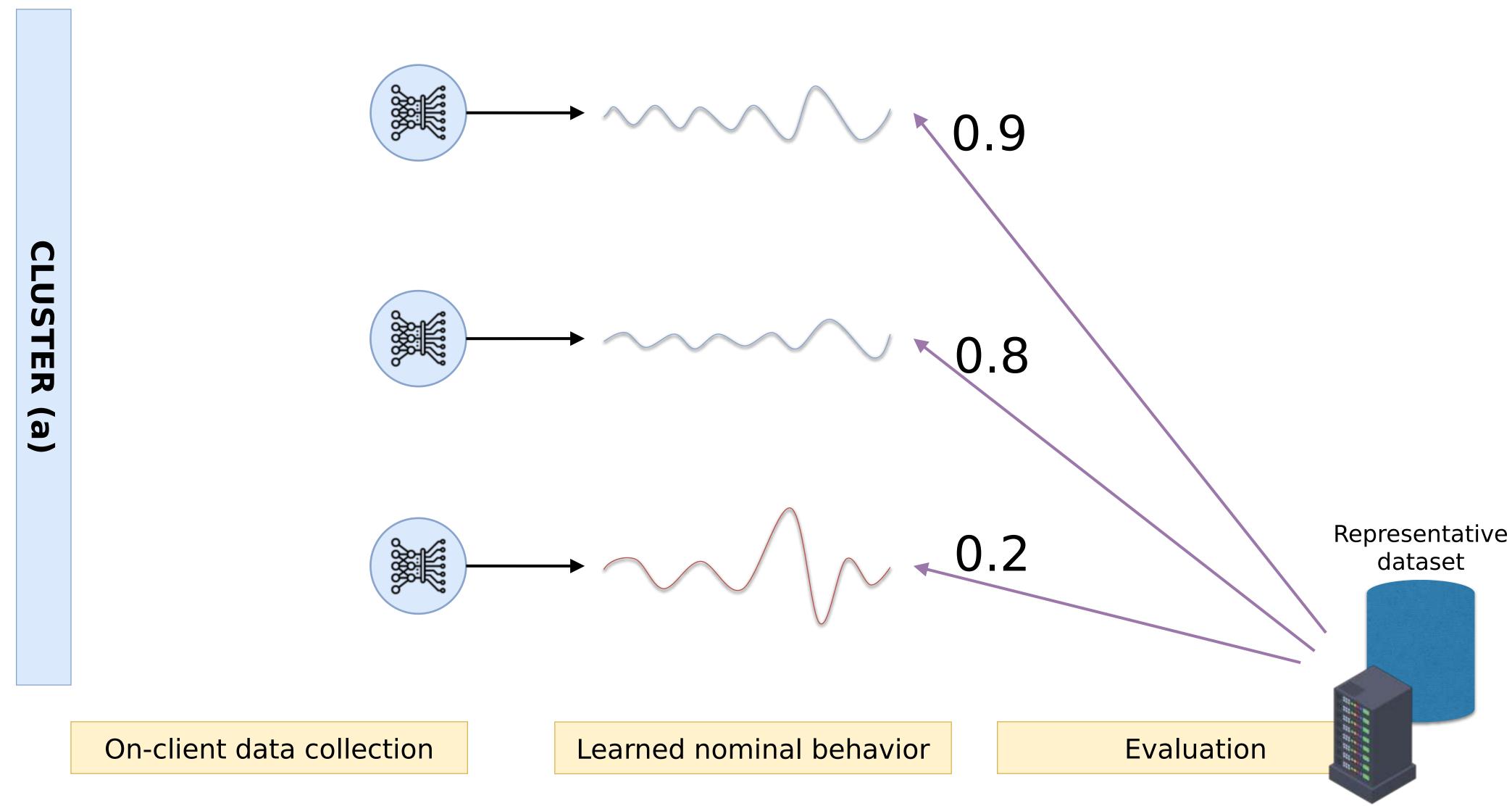


Léo LAVAUR & Benjamin COSTE | cyberClffigrure 7b: hetereogeneity in FIDS



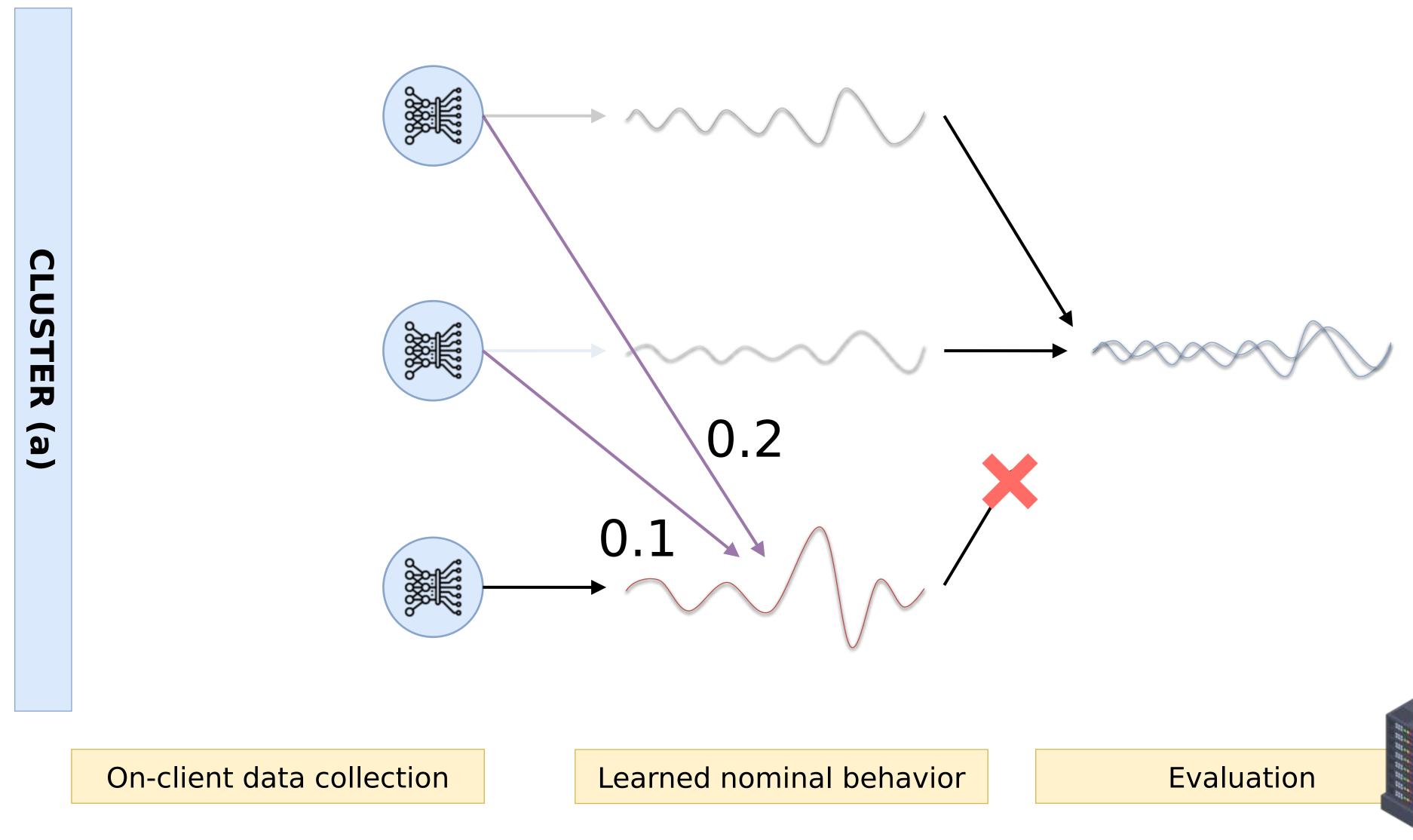
Léo LAVAUR & Benjamin COSTE | cyberCNI.fr Figure 8a: trust in FIDS

DEALING WITH TRUST: reputation system



Léo LAVAUR & Benjamin COSTE | cyberCNI.fr Figure 8b: trust in FIDS

DEALING WITH TRUST: reputation system



Léo LAVAUR & Benjamin COSTE | cyberCNI.fr Figure 8c: trust in FIDS

Aim: tackle heterogeneity and lack of trust in FL-based collaboration. (RQ1-3)

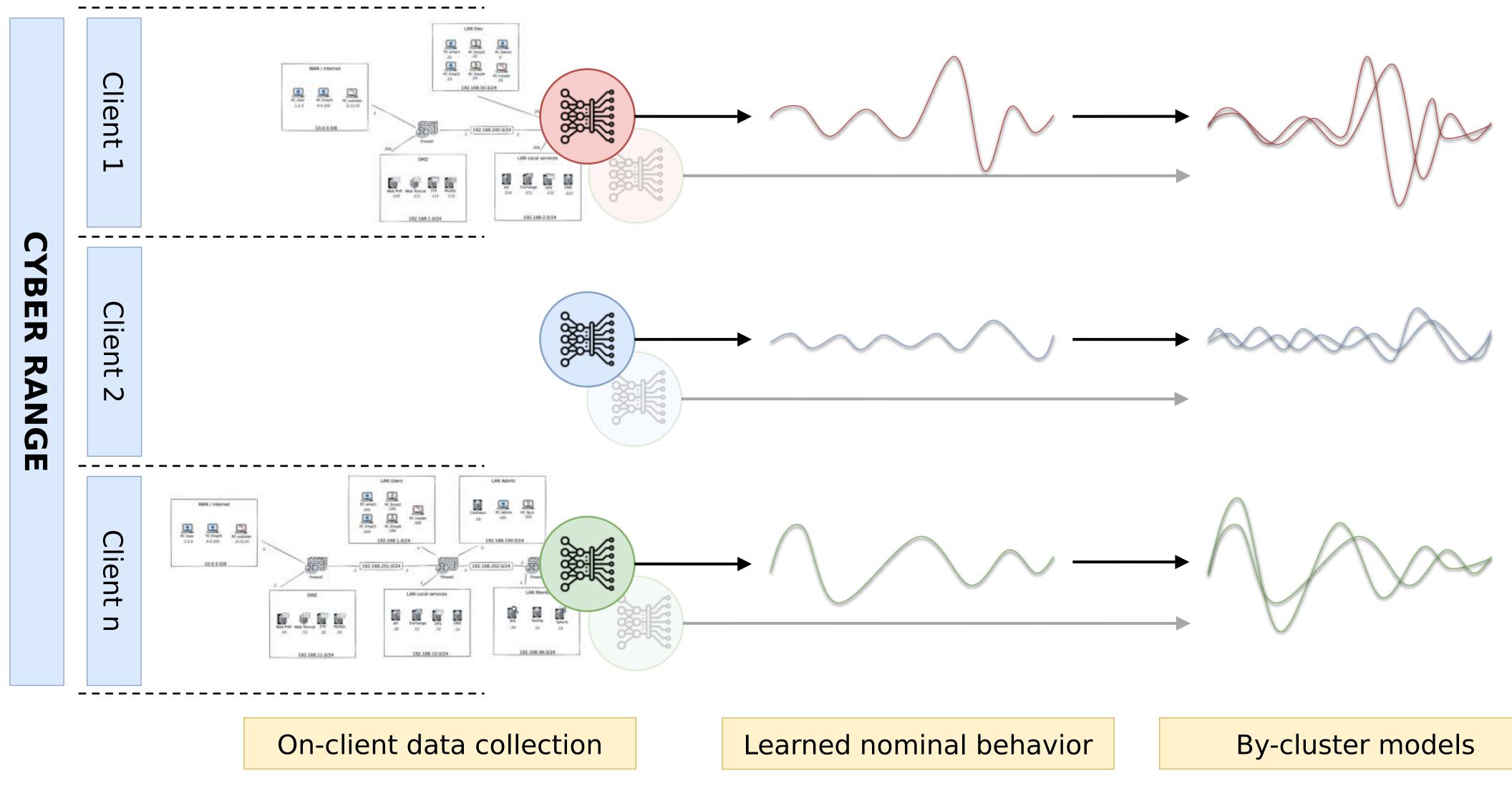
Means:

- use clustering to group clients by data-similarity
- use reputation to iteratively build trust between clients

How: Introduce cross-evaluation between clients, which provides feedbacks on how each client views the other models.

ollaboration project with another PhD student at IMT Atlantique who focus on reputation systems.

GENERATING DATA



Léo LAVAUR & Benjamin COSTE | cyberCNI.fFigure 9: evaluation in FIDSs

FedITN

- Aim: provide tools dedicated to evaluate FIDSs and other collaborative IDSs (RQ1, RQ4)

 - performance against heterogeneity; knowledge transfer between clients;
 - model adaptability;
 - generation capability;

Means:

- a new dataset with four network topologies
- evaluation baselines and tools for reproducibility

Outcomes and perspectives

Sécurité des infrastructures critiques

CONCLUSION

Federated Learning for Collaborative IDSs:

- Focus on heterogeneity and trust; lacksquare
- Emphasis on evaluation, reproducibility, and sound experiments. lacksquare

Other research directions:

• scalability, model selection, ...

Prospective vision:

- Opt-in and open collaboration;
- Federation of models of all kind;
- *Magic* collaboration.

• Addresses actual problems from the industry (e.g., SOC collaboration);

QUESTIONS ?

Journals and International conferences

2022, doi: <u>10.1109/TNSM.2022.3177512</u>.

National and local venues

Rendezvous: Ensuring Trust in a Decentralized World (C&ESAR 2022), 2022

PUBLICATIONS

[a] L. Lavaur, M. -O. Pahl, Y. Busnel and F. Autrel, "The Evolution of Federated Learning-based Intrusion Detection and Mitigation: a Survey," in IEEE Transactions on Network and Service Management (TNSM),

[b] L. Lavaur, B. Costé, M. -O. Pahl, Y. Busnel, and F. Autrel, "Federated learning as enabler for collaboration between not fully-trusting distributed parties," in 29th Computer & Electronics Security Application

REFERENCES

- [1] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, "Demystifying IoT Security: An *Communications Surveys & Tutorials*, 2019
- research directions", Computers & Security, 2019.
- *Computers & Security, 2018*
- Network Security Management, 2022
- systems," International Conference on Computer Communications and Networks, 2019.
- Multiple LANs," 2020 International Joint Conference on Neural Networks (IJCNN), 2020
- Detection," 14th International Conference on Network and Service Management, 2018
- Systems (ICDCS), 2019

CYBERCN

[9] S. Rathore, B. Wook Kwon, and J. H. Park, "BlockSecIoT-Net: Blockchain-based decentralized security Léo LAVAUR & Bearahite close forclobe methork," Journal of Network and Computer Applications, 2019

Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations," IEEE

[2] T. D. Wagner, K. Mahbub, E. Palomar, and A. E. Abdallah, "Cyber threat intelligence sharing: Survey and

[3] W. Tounsi and H. Rais, "A survey on technical threat intelligence in the age of sophisticated cyber attacks,"

[4] L. Lavaur, M.-O. Pahl, Y. Busnel, and F. Autrel, "The Evolution of Federated Learning-based Intrusion Detection and Mitigation: a Survey," IEEE Trans. On Network and Services Management, Special Issue on Advances in

[5] W. Schneble and G. Thamilarasu, "Attack detection using federated learning in medical cyber-physical

[6] Y. Sun, H. Ochiai, and H. Esaki, "Intrusion Detection with Segmented Federated Learning for Large-Scale

[7] M.-O. Pahl and F. X. Aubet, "All Eyes on You: Distributed Multi-Dimensional IoT Microservice Anomaly

[8] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R. Sadeghi, "DIoT: A Federated Selflearning Anomaly Detection System for IoT," IEEE 39th International Conference on Distributed Computing

REFERENCES

- (BigDataSE), 2020
- Device, or Federated Learning?" *IEEE Network*, 2020
- Industrial Cyber-Physical Systems," IEEE Transactions on Industrial Informatics, 2020
- Gaussian Mixture Model," in Machine Learning for Networking, 2020
- Learning for Device Failure Detection in Industrial IoT," IEEE Internet of Things Journal, 2020
- on Federated Learning," IEEE Access, 2020
- System Datasets,* *arXiv.org*, 2021

CYBERCN

[18] G. Bertoli, L. A. Pereira Junior, A. L. dos Santos, O. Saotome, "Generalizing intrusion detection for heterogeneous networks: A stacked-unsupervised federated learning approach," arXiv.org, 2022 Léo LAVAUR & Benjamin COSTE | cyberCNI.fr

[10] Y. Fan, Y. Li, M. Zhan, H. Cui, and Y. Zhang, "IoTDefender: A Federated Transfer Learning Intrusion Detection Framework for 5G IoT," in 2020 IEEE 14th International Conference on Big Data Science and Engineering

[11] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, "Internet of Things Intrusion Detection: Centralized, On-

[12] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, "DeepFed: Federated Deep Learning for Intrusion Detection in

[13] Y. Chen, J. Zhang, and C. K. Yeo, "Network Anomaly Detection Using Federated Deep Autoencoding

[14] T. D. Nguyen, P. Rieger, H. Yalame, H. Mo[°]llering, H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, A.-R. Sadeghi, T. Schneider, and S. Zeitouni. "FLGUARD: Secure and Private Federated Learning.", arXiv, 2021

[15] W. Zhang, Q. Lu, Q. Yu, Z. Li, Y. Liu, S. K. Lo, S. Chen, X. Xu, and L. Zhu, "Blockchain-based Federated

[16] Z. Chen, N. Lv, P. Liu, Y. Fang, K. Chen, and W. Pan, "Intrusion Detection for Wireless Edge Networks Based

[17] M. Sarhan, S. Layeghy, and M. Portmann, *Towards a Standard Feature Set for Network Intrusion Detection

REFERENCES

[19] A. Dey, "Science de la donnée en appui des opérations de cybersécurité," in *Ecole nationale supérieure* Mines-Télécom Atlantique Bretagne Pays de la Loire, thesis manuscript, 2022

[20] Q. Yang, Y. Liu, T. Chen, and Y. Tong, "Federated Machine Learning: Concept and Applications," in ACM Transactions on Intelligent Systems and Technology, 2019

BACKUP SLIDES

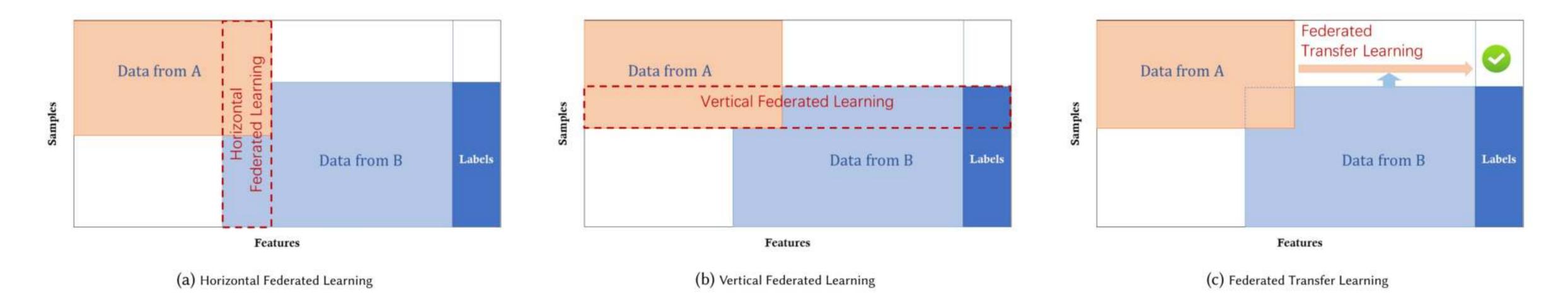


Figure X: Different settings of FL by Yang et al. [20]

COLLABORATION IN CYBERSECURITY

- Privacy risks eg. information disclosure;
- Security risks eg. revealing internals, poisoning;
- Availability eg. single point of failure in centralized systems;
- Resources eg. higher bandwidth consumption when sharing data; . . .

Collaborating and sharing information to cope with the increase in cyberattacks [1]-[3]

TRUST-FIDS Methodology

- CSE-CIC-IDS2018)
- **Evaluation:**
 - Comparison with the SoA [18] on the same dataset
 - w and w/o clustering
 - w and w/o reputation
 - w and w/o poisoning attacks / neglecting participants
- **Expected results:**
 - Clustering the dataset is in four parts \rightarrow four clusters at least
 - *Reputation* contribution-aware aggregation, detection of neglecting participants
 - faster convergence, better results than without both

Dataset: "standardized IDS datasets" [17] (UNSW-NB15, BoT-IoT, ToN-IoT, and

TRUST-FIDS Architecture

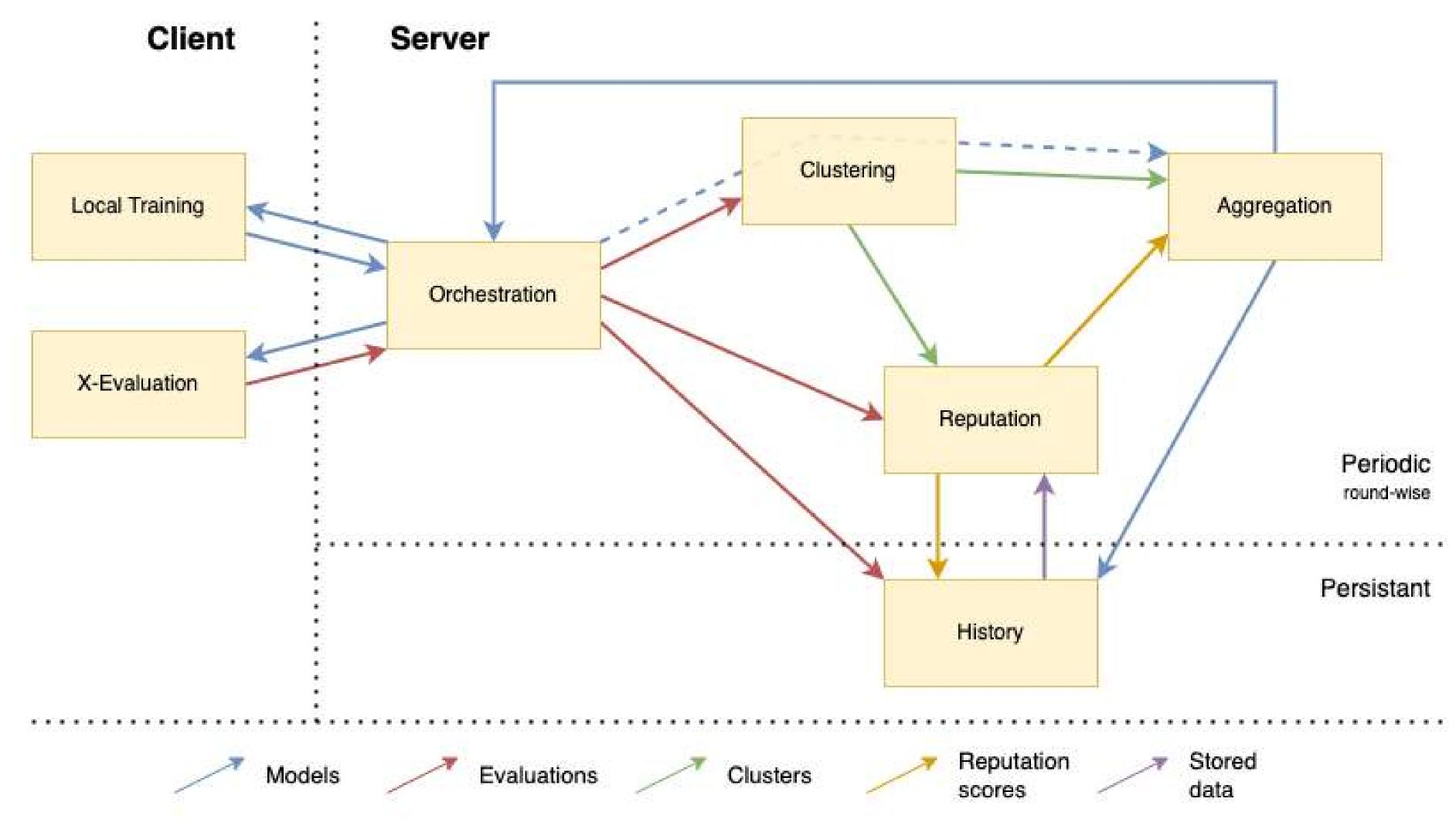


Figure X: Logical architecture of the Trust-FIDS approach

Léo LAVAUR & Benjamin COSTE | cyberCNI.fr

۲

CYBERCN

FedITN Methodology

- Attacks:
 - found in common datasets available in cyberrange
 - Implement only what is missing
 - ATT&CK[®]
- □ Heterogeneity:
 - location, and *cyber-maturity* (*eg.* firewall rules)
- **Evaluation:**
 - Metric comparison with other datasets (eg. NSL-KDD, CIC-IDS-201X, ...);
 - Comparison on SoA [18] approaches with other datasets;
- **Expected results:**
 - Existing approaches focusing on statistical heterogeneity might falter
 - Complexity difference in topology will show if FL can really transfer knowledge

55 attacks with variations for the underlying services, labelling following the MITRE

• Different topologies with different services, architecture (network segmentation), probe

FedITN Testbed and topologies

Topology 1 Expert topology with good segmentation.

IT networks

Figure X: Airbus CyberRange

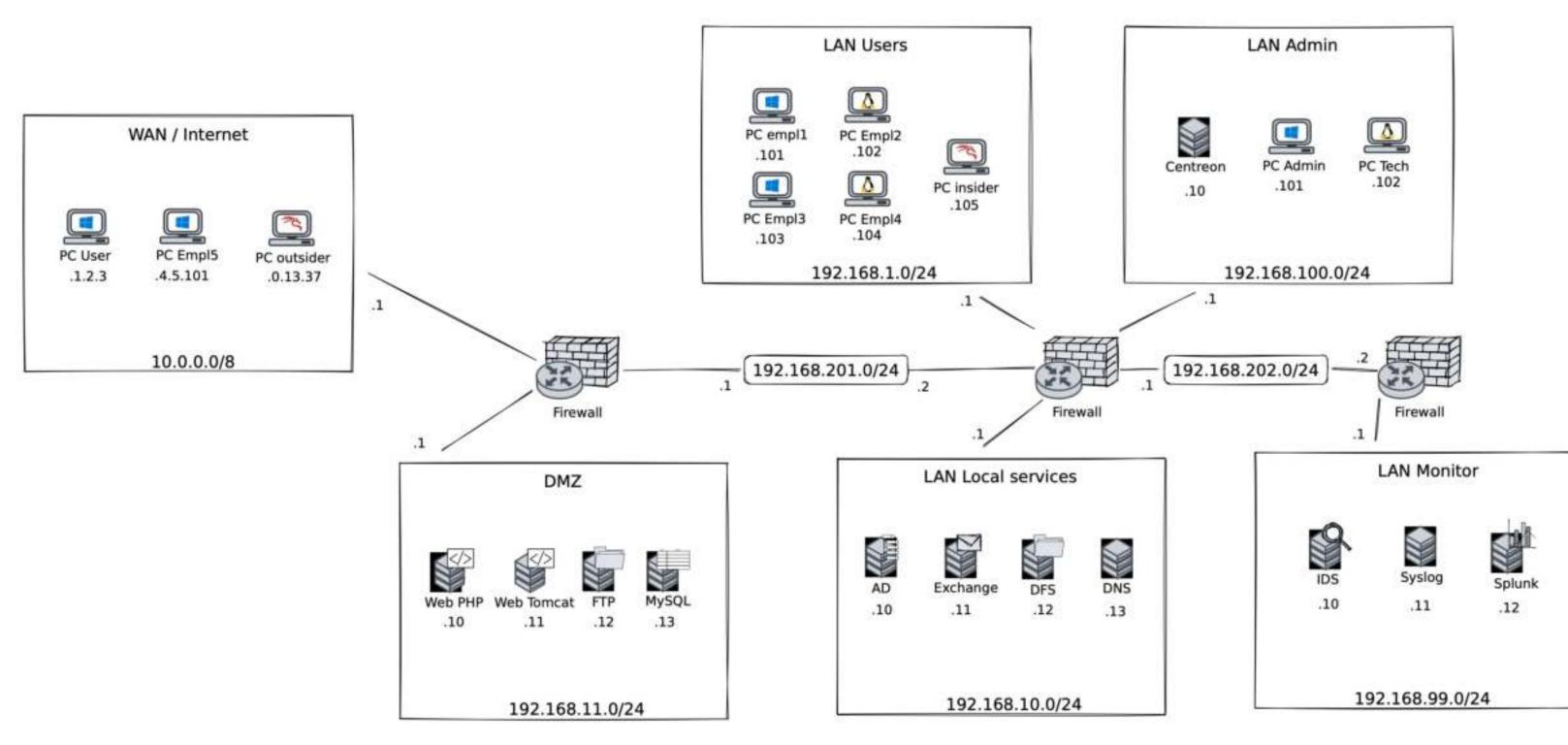
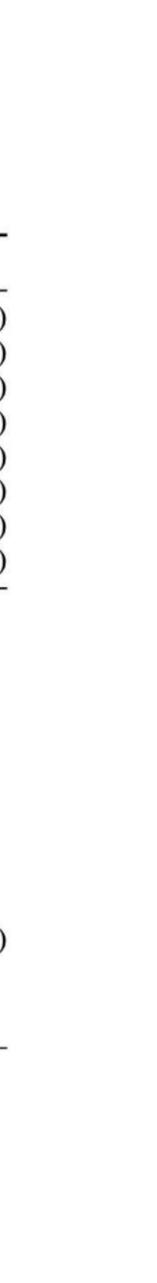


Figure X: Topology 1, modified version of Airbus Cybersecurity's default topologies

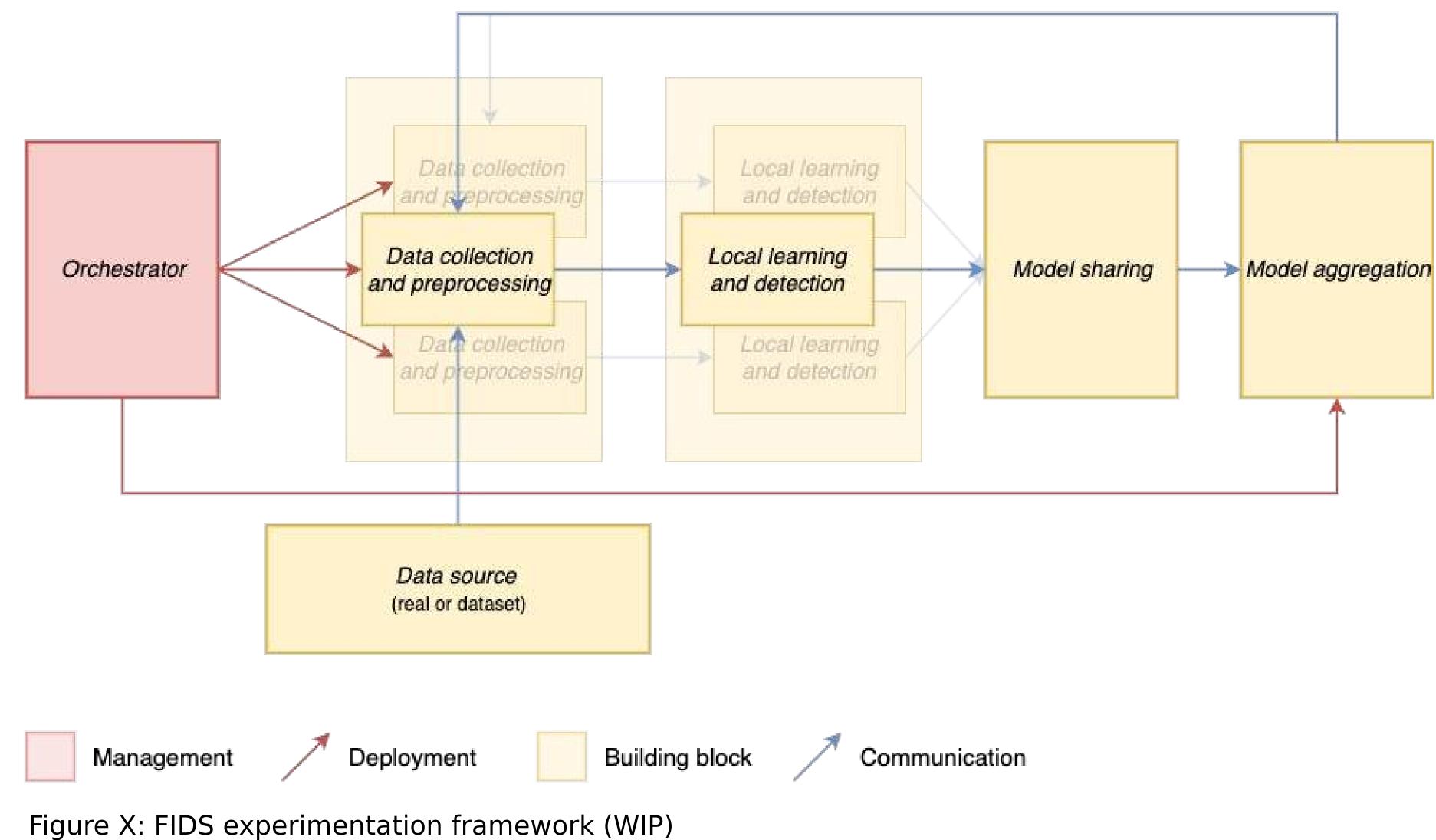
FedITN Attacks

Attack	Category	Target	ATT&CK Technique	ATT&CK Tactic
Bruteforce FTP	Bruteforce	FTP Server	Password Guessing (T1110.001)	Credential Access (TA0006)
Bruteforce lopin form	Bruteforce	Web Server w/ login form	Password Guessing (T1110.001)	Credential Access (TA0006)
Bruteforce MySQL	Bruteforce	MySQL server	Password Guessing (T1110.001)	Credential Access (TA0006)
Bruteforce RDP	Bruteforce	Windows Host w/ RDP server	Password Guessing (T1110.001)	Credential Access (TA0006)
Bruteforce SMB	Bruteforce	Windows Host w/ SMB server	Password Guessing (T1110.001)	Credential Access (TA0006)
Bruteforce SSH	Bruteforce	SSH server	Password Guessing (T1110.001)	Credential Access (TA0006)
Bruteforce Telnet	Bruteforce	Telnet server	Password Guessing (T1110.001)	Credential Access (TA0006)
Bruteforce VNC	Bruteforce	VNC server	Password Guessing (T1110.001)	Credential Access (TA0006)
DNS amplification	DoS	Any host	Reflection Amplification (T1498.002)	Impact (TA0040)
ICMP IGMP flood	DoS	Any host	Direct Network Flood (T1498.001)	Impact (TA0040)
PUSH ACK flood	Dos	Any host	Direct Network Flood (T1498.001)	Impact (TA0040)
R.U.D.Y.	DoS	Web Server w/ form	Service Exhaustion Flood (T1499.002)	Impact (TA0040)
slowloris	DoS	Web Server	Service Exhaustion Flood (T1499.002)	Impact (TA0040)
SYN flood	DoS	Any host	OS Exhaustion Flood (T1499.001)	Impact (TA0040)
TCP killer	DoS	Any host	Application or System Exploitation (T1499.004)	Impact (TA0040)
TCP RST flood	DoS	Any host	Direct Network Flood (T1498.001)	Impact (TA0040)
UDP flood	DoS	Any host	Direct Network Flood (T1498.001)	Impact (TA0040)
ZIP bomb	DoS	Any host	ARP Cache Poisoning (T1557.002) Transmitted Data Manipulation (T1565.002) OS Exhaustion Flood (T1499.001)	Credential Access (TA0006) Collection (TA0009) Impact (TA0040)

Figure X: Exemple of considered attacks and according labels



FedITN Experimentation pipeline



Léo LAVAUR & Benjamin COSTE | cyberCNI.fr

۲

CYBERCN

MODEL WEIGHTING Potential leads

- - Difficult to define
 - Possibly good metric for model weighting
- ¹ cyber-maturity: which confidence can I put in one participant's data?
 - Arbitrarily attribute maturity to some clients to evaluate the impact on federation
 - Ideally use that to create topologies in the future
- - Improve model aggregation information about its content
 - Balance to find with privacy

¹ data quality: what is the quality of the data the model has been trained on?

Semantic metadata: what does this model contain, and what does mine lack?

